امپراتور همکاری در فروش فایل
  • بازدید : 104 views
  • بدون نظر

خرید و دانلود
با قیمت 3,000 تومان
این فایل در ۹صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:


در اوایل قرن هفدهم میلادی گالیله با ساختن تلسكوپ، چشم خود را به ابزاری مسلح نمود كه می‌توانست توانایی رصد او را افزایش دهد. هر چند امروزه تلسكوپهایی به مراتب قویتر و حساستر از آنچه گالیله ساخته بود، طراحی و تولید می‌شوند، اما اصل موضوع هنوز تغییر نكرده است. واقعیت این است كه باید نوری وجود داشته باشد تا تلسكوپ با جمع‌آوری و متمركز ساختن آن تصویری تهیه نماید.
جیمز كلارك ماكسول، فیزیكدان برجسته انگلیسی در قرن نوزدهم میلادی پی به ماهیت الكترومغناطیسی بودن نور برد. در واقع امواج الكترومغناطیسی تنها به نور محدود نمی‌شوند و طیف گسترده‌ای را در بر می‌گیرند، اما چشم ما فقط قادر به ایجاد تصویر از محدوده خاصی از این طیف گسترده‌ می‌باشد كه ما آن را نور می‌نامیم. برای مشاهده و درك سایر طول موجهای ارسال شده به جانب ما، احتیاج به ابزاری جهت جمع‌آوری، آنالیز و آشكارسازی آنها به شكل صوت یا تصویر داریم
واژه تلسکوپ می‌تواند به تمام حیطهٔ وسایل عملیاتی درسرتاسر ناحیهٔ میدان الکترومغناطیس اشاره داشته باشد، اما تفاوت‌های عمده‌ای در جمع‌آوری نور (تابش الکترومغناطیس) توسط ستاره‌شناسان و منجمان در پهناهای فرکانسی مختلف وجود دارد.

تلسکوپ‌ها ممکن است براساس طول موجِ نوری که تشخیص می‌دهند، دسته‌بندی شوند:

ایکس‌ری(به انگلیسی: X-ray)، استفاده از طول‌موج کوتاه‌تر از نور فرابنفش
فرابنفش، استفاده از طول‌موج کوتاه‌تر از نور مرئی
نوری، استفاده از نور مرئی
فرابنفش، استفاده از طول‎موج بلندتر از نور مرئی
ساب‌میلی‌متر(به انگلیسی: Submillimetre)، استفاده از طول‎موج بلندتر از نور فرابنفش

هرچه میزان طول‎موج، بلندتر می‌شود، استفاده از فناوری آنتن برای تعامل با تابش الکترومغناطیس آسان‌تر می‌شود، حتی ممکن است برای دریافت آن‌ها بتوان آنتن‌های بسیار کوچکی ساخت. نورهای نزدیک به طول‌موج فرابنفش را می‌توان بسیار شبیه به تور مرئی بکارگرفت، با این حال در محدوده نور مادون‌قرمزِدور و ساب‌میلیمتر، تلسکوپ‌ها می‌تواند بیشتر شبیه یک تلسکوپ رادیویی به کار گرفته شوند. برای نمونه، تلسکوپِ جِیمز کلارک ماکسوِل(به انگلیسی: James Clerk Maxwell Telescope | JCMT) می‌تواند با استفاده از یک آنتن سهمی آلومینیومی، از طول‌موجِ ۳ میکرومتر(۰٫۰۰۳ میلی‌متر) تا ۲۰۰۰ میکرومتر(۲ میلی‌متر) را مشاهده کند،[۱۱] از سوی دیگر، تلسکوپ فضایی اسپیتزر (به انگلیسی: Spitzer Space Telescope)، با استفاده از یک آینه بازتابنده (بازتاب نوری)، از طول‌موجِ ۳ میکرومتر(۰٫۰۰۳ میلی‌متر) تا ۱۸۰ میکرومتر(۰٫۱۸ میلی‌متر) را مشاهده می‌کند. همچنین با استفاده از بازتاب‌های نوری، تلسکوپ فضایی هابل (به انگلیسی: Hubble Space Telescope)، توسط دوربین دید گستردهٔ ۳(به انگلیسی: Wide Field Camera 3)، توان مشاهده طول موج‌های بین ۲ میکرومتر(۰٫۰۰۲ میلی‌متر) تا ۱٫۷ میکرومتر(۰٫۰۰۱۷ میلی‌متر)، از محدوده نور فرابنفش تا فروسرخ را دارد.[۱۲]
تصویرساز فرنل (به انگلیسی: Fresnel Imager)، یک فناوری لنز نوری
تجهیزات نوری اشعه ایکس(به انگلیسی: X-ray optics)، برای برخی از طول‌موج‌های اشعه ایکس
ˌ
یکی دیگر دست‌آوردها در طراحی تلسکوپ، و برای افزایش انرژی فوتون‌ها (طول‌موج کوتاه‌تر و فرکانس(بسامد) بالاتر) استفاده از یک بازتابنده کامل نوری است. تلسکوپ‌هایی مانند ترِیس(به انگلیسی: TRACE) و سوهو(به انگلیسی: SOHO)، از آیینه‌های ویژه‌ای برای تشدیدِ انعکاس اشعه فرابنفش استفاده می‌کنند، به همین دلیل تولیدِ تفکیک‌پذیری بالاتر و وضوح بیشتر تصاویر از این تلسکوپ‌ها ممکن شده است. دهانه بزرگتر تنها به معنی جمع‌آوری نور بیشتر نیست، بلکه تلسکوپ را قادر به تفکیک‌پذیری زاویه‌ای دقیق‌تری می‌کند.
تلسکوپ‌ها همچنین بر اساس محل قرارگیری نیز دسته‌بندی می‌شوند: نوع زمینی، تلسکوپ فضایی و یا تلسکوپ پروازی(به انگلیسی: Flying telescope) و یا بر پایهٔ استفاده توسط منجمان حرفه‌ای و یا آماتور.
تلسکوپ نوری[ویرایش]
یک تلسکوپ مدرن آماتوری
تلسکوپ فضایی مادون قرمز IRAS
یک تلسکوپ نوری طیف مرئی نور را گردآوری می‌کند. تلسکوپ‌های نوری قطر زاویه‌ای و روشنی اجرام مورد رصد را افزایش می‌دهند.[۱۳] در یک تلسکوپ نوری به منظور ایجاد تصویر از آینه و یا عدسی استفاده شده است. از این نظر تلسکوپ‌ها را به سه گروه عمده تقسیم‌بندی می‌کنند:
تلسکوپ‌های شکستی
تلسکوپ‌های بازتابی
تلسکوپ‌های شکستی – بازتابی[۱۴]
تلسکوپ‌های شکستی[ویرایش]
نوشتار اصلی: تلسکوپ شکستی
تلسکوپ گالیله‌ای
در یک تلسکوپ شکستی برای ایجاد تصویر از عدسی استفاده می‌شود. اولین بار گالیله از این نوع تلسکوپ استفاده کرد و از این رو به این گونه تلسکوپ‌ها گالیله‌ای نیز می‌گویند.
تلسکوپ‌های شکستی انواع مختلفی دارند که عبارتند از:
تلسکوپ شکستی آکروماتیک
تلسکوپ شکستی آپوکروماتیک
تلسکوپ شکستی آکروماتیک[ویرایش]
در تلسکوپ‌های شکستی از دو عدسی شیئی و چشمی استفاده می‌شود. عدسی شیئی برای جمع‌آوری نور و کانونی کردن آن و عدسی چشمی برای بزرگنمایی تصویر. استفاده اشز عدسی به عنوان شیئی دارای معایب مهمی مانند ابیراهی رنگی است. برای رفع این مشکل می‌توان شیئی را از دو عدسی ساخت که منجر به ساخت تلسکوپ شکستی نوع آکروماتیک می‌شود. نسبت کانونی این نوع تلسکوپ‌ها از f/۷ تا f/۱۱ است که به این تلسکوپ‌ها اصطلاحاً «تلسکوپ کند» می‌گویند.
تلسکوپ شکستی آپوکروماتیک[ویرایش]
تلسکوپ‌های شکستی آکروماتیک سنتی پس از دو قرن استفاده گسترده حالا جای خود را به مدلی پیشرفته‌تر به نام آپکروماتیک می‌دهند. عدسی شیئی این نوع تلسکوپ‌ها از چندین عدسی ساخته شده است که از جنس ED هستند. تلسکوپ‌هایی که شیئی آنها از سه قسمت تشکیل شده باشد به اصطلاح تریبلت می‌گویند. فضای بین این عدسی‌ها را از گاز نیتروژن پر می‌کنند. نسبت کانونی تلسکوپ‌های شکستی آپوکروماتیک معمولاً ازf/۴ تا f/۹ می‌باشد که به این تلسکوپ‌ها «تلسکوپ تند» می‌گویند. همچنین به علت پایین بودن نسبت کانونی از این نوع تلسکوپ‌ها برای عکاسی نجومی نیز استفاده می‌کنند.
تلسکوپ‌های بازتابی[ویرایش]
نوشتار اصلی: تلسکوپ بازتابی
در این تلسکوپ‌ها جمع‌آوری نور به عهدهٔ یک آینهٔ مقعر است. پوشش بازتابندهٔ آینه می‌تواند نقره یا آلومینیم باشد. پوشش آلومینیومی این مزیت را دارد که اکسیده شدن آن باعث از بین رفتن قابلیت بازتاب آینه نمی‌شود. در بعضی دیگر از تلسکوپ‌ها از نقره استفاده می‌شود، سپس روی آن پوششی قرار می‌گیرد که مانع اکسید شدن نقره می‌شود. آینهٔ مقعر می‌تواند قسمتی از یک کره (کروی) یا قسمتی از یک سهمی (سهموی) باشد. در تلسکوپ‌های بازتابی اگر از آینه سهموی استفاده شود، ابیراهی کروی به حداقل کاهش می‌یابد. تلسکوپ‌های بازتابی پس از مدتی نیاز به تمیز کردن آینه و پس از آن بسته به کیفیت روکش آلومینیوم، نیاز به تجدید روکش دارند. تلسکوپ‌های بازتابی در مقایسه با نوع شکستی یک مزیت عمده دارند: آینه خمیده در قسمت انتهایی تلسکوپ نصب می‌شود که باعث می‌شود آینه زیر وزن خود تغییر شکل ندهد.
تلسکوپ‌های بازتابی به دو دستهٔ اصلی تقسیم می‌شوند:
تلسکوپ نیوتنی
تلسکوپ کسگرین
تلسکوپ نیوتنی[ویرایش]
تلسکوپ نیوتونی
در این نوع تلسکوپ، نور جمع‌آوری شده به وسیلهٔ یک آیینهٔ کاو (مقعر)، با یک آینهٔ ثانویهٔ تخت یا منشور به بیرون از لولهٔ تلسکوپ هدایت شده و به عدسی چشمی ارسال می‌شود. اگرچه تلسکوپ‌های نیوتنی از انواع شکستی کوتاهترند، ولی همچنان از مدل‌های جدیدتر کسگرین یا اشمیت-کسگرین بلندتر و سنگین‌تر هستند.
تلسکوپ کسگرین[ویرایش]
تلسکوپ‌های نیوتنی نسبتاً بلند هستند و هنگامی که اندازهٔ آینه اصلی آنها بزرگ‌تر می‌شود، طول تلسکوپ بسیار زیاد می‌شود. برای حل این مشکل از روشی به نام کاسگرین استفاده می‌شود.
در این روش مرکز آینهٔ اصلی تلسکوپ سوراخ شده و چشمی در پشت تلسکوپ قرار می‌گیرد. آینهٔ ثانویه پرتوهای آینهٔ اصلی را از میان سوراخ آینهٔ اصلی به سمت چشمی می‌فرستد. در این روش به دلیل اینکه پرتوها طول تلسکوپ را دوبار طی می‌کنند، طول تلسکوپ به نصف کاهش می‌یابد. از روش کاسگرین در لنزهای آینه‌ای دوربین‌های عکاسی نیز استفاده می‌شود.
تلسکوپ‌های شکستی-بازتابی[ویرایش]
این تلسکوپ‌ها شبیه تلسکوپ‌های بازتابی هستند، با این تفاوت که در ساخت آنان از تیغه‌های شیشه‌ای‌ای استفاده شده است تا بتوان از آینه کروی بجای آینهٔ سهموی استفاده کرد. تلسکوپ‌های اشمیت و ماکسوتف – باورز از این دسته‌اند.
تلسکوپ اشمیت[ویرایش]
در دهانهٔ این تلسکوپ تیغه باریکی به نام تیغه اشمیت قرار می‌گیرد که کار تصحیح خطای آینه را بر عهده دارد و بر اساس تراش و خطای آینه ساخته می‌شود.
تلسکوپ اشمیت-کاسگرین[ویرایش]
تلسکوپ اشمیت-کاسگرین
تلسکوپ اشمیت-کاسگرین به تلسکوپی گفته می‌شود که از هر دو فناوری کاسگرین و تیغه اشمیت در آن استفاده شده باشد. این روش عموماً برای تلسکوپ‌های ۸ اینچ به بالا به کار می‌رود.
عدم شفافیت جو برای امواج الکترومغناطیس[ویرایش]
نمودار طیف الکترومغناطیس با مشخص شدن قسمت‌هایی که جو برای آن شفاف یا غیرشفاف است به همراه انواع تلسکوپ‌هایی که برای دریافت تصویر از قسمت‌های مختلف طیف به کار می‌رود.
از آنجا که جو زمین برای عمده طیف الکترومغناطیس شفاف نیست، تنها چند محدوده از امواج الکترومغناطیس در سطح زمین قابل دریافت است. این محدوده‌ها عبارتند از فروسرخ نزدیک و بخضی از امواج رادیویی. به همین دلیل هیچ تلسکوپ پرتو ایکس یا فروسرخ دوری در سطح زمین قابل استفاده نیست. چنین تلسکوپ‌هایی باید به مدار زمین زمین فرستاده شوند تا خارج از جو رصد خود را انجام دهند. حتی برای طول موج‌هایی که در سطح زمین قابل دریافت‌اند، تلسکوپی در مدار زمین به دلیل بدور بودن از اغتشاشات جوی، کارایی بسیار بیشتری دارد.
استقرار تلسکوپ[ویرایش]
تکیه‌گاه تلسکوپ باید محکم و استوار باشد تا از لرزش آن جلوگیری کند؛ ضمن اینکه باید در هنگام رصد، تلسکوپ را به نرمی و به صورت یکنواخت چرخاند. دو شیوهٔ اصلی در استقرار تلسکوپ وجود دارد: استوایی و سمتی-ارتفاعی.
استقرار استوایی[ویرایش]
نوشتار اصلی: استقرار استوایی
در استقرار استوایی، یک محور تلسکوپ به سمت قطب سماوی نشانه می‌رود. این محور را محور قطبی یا محور ساعت نام نهاده‌ند. محور دیگر، عمود بر این محور، محور مِیل است. با توجه به موازی بودن محور ساعت و محور چرخش زمین، اگر تلسکوپ را با یک سرعت ثابت حول این محور بچرخانیم، چرخش ظاهری آسمان جبران می‌ود. مهمترین مشکل فنی در نصب استوایی، محور میل می‌باشد. زمانی که تلسکوپ به سمت جنوب نشانه رفته است، وزن آن، نیرویی عمود بر این محور وارد می‌کند. چنانچه تلسکوپ در تعقیب یک جسم به سمت غرب بچرخد، یاتاقان‌ها باید یک بار اضافی را، موازی با محور میل، تحمل کنند.

خرید و دانلود

با قیمت 3,000 تومان
  • انتشار : ۱۸ اسفند ۹۴
  • دسته بندی :
  • نویسنده :

عتیقه زیرخاکی گنج