• بازدید : 54 views
  • بدون نظر
این فایل در ۱۶صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

با پيشرفت تكنولوژي كه در تمامي زمينه ها تاثيرگذار بوده در ساخت فرستنده هاي راديويي .هم بي تاثير نبوده است .ساخت فرستنده هاي راديويي كه پخش برنامه هاي توليد شده بصورت الكترومغناطيسي را بعهده دارد در مسيري تكاملي به مرحله اي رسيده كه بحث فرستنده هاي راديويي ديجيتال را مطرح ساخته است.
اولين مراحل توليد اين نوع دستگاهها كه تمامي قسمت هاي آن با استفاده از لامپ ساخته شده بود در مراحل مختلف توليدي رو به تكامل رفت كه از مراحل ساخت فرستنده هاي تمامي لامپي به نيمه لامپي و اخيرا بصورت نيمه هادي رسيده و امروزه بحث استفاده از فرستنده هاي راديويي  ديجيتال بصورت مطرح استDABياDRM   در كشور ما مورد اخير فعلا در حال طرح و بررسي مي باشد 
امواج در راديو
اینکه چه کسی مخترع اصلی رادیو است، که در آن زمان تلگراف بی سیم نامیده می‌شد، مورد اختلاف است. ادعاهایی وجود دارد که ناتان ستابلفیلد رادیو را پیش از تسلا و مارکونی ساخت، اما به نظر می‌رسد که دستگاه وی به جای ارسال رادیویی با ارسال القایی کار می‌کرده است. انسان بیش از ۱۰۰ سال است که با امواج الکترومغناطیسی آشناست و امروز از آنها به طور وسیعی در زندگی خود استفاده می‌کند و این امواج در یک میدان مغناطیسی و یک میدان الکتریکی عمود بر هم بوجود آمده‌اند. ویژگی بارزشان که آنها را متمایز ساخته این است که برای سیر نیاز به محیط‌ هادی ندارد و در خلا به راحتی حرکت می‌کنند. امواج رادیویی نیز دسته‌ای از این فیزیک امواج هستند.
پایه‌های تئوری انتشار امواج الکترومغناطیسی برای اولین بار توسط جیمز کارل ماکسول در سال ۱۸۷۳م در مقاله‌ای تحت عنوان یک تئوری دینامیک از میدان الکتریکی که به انجمن رویال ارائه شده بود، بیان شد که نتیجه کار وی در طی سالهای بین ۱۸۶۱م تا ۱۸۶۵م بود. در سال ۱۸۹۳م در سنت لوییس میسوری)) ، نیکلا تسلا اولین نمایش عمومی ارتباطات رادیویی را انجام داد. 
 
او در مقابل مؤسسه فرانکلین در فیلادلفیا و انجمن روشنایی الکتریکی ملی اصول ارتباطات رادیویی را به دقت شرح و توضیح داد. تجهیزاتی که او استفاده کرد تمامی اجزایی را که قبل از ساخته شدن تیوب خلا در سیستمهای رادویی وجود داشت، دارا بودند. او بر خلاف مارکونی و دیگران که از کوهیرر استفاده می‌کردند، برای اولین بار از گیرنده‌های مغناطیسی استفاده کرد 
در سال ۱۸۹۴م سر الیور لوج نشان داد که می‌توان با استفاده از یک آشکار ساز با نام کوهیرر پیام دادن توسط امواج رادیویی را ممکن ساخت. این آشکار ساز متشکل از تیوبی پر شده با براده‌های آهن بود که توسط تمیستوکل کالزچی ـ اونستی در فرموی ایتالیا در سال ۱۸۸۴م ساخته شده بود. بعدها ادوارد برنلی از فرانسه و الکساندر پوپوف از روسیه نسخه بهبود یافته‌ای از کوهیرر را ابداع کردند. مردم روسیه ادعا می‌کنند پوپوف که سیستم ارتباطاتی عملیای بر پایه کوهیرر ساخت‏، مخترع رادیو بوده است.
فیزیکدانی هندی با نام جاجدیش چاندرا بوس استفاده از امواج رادیویی را به صورت عمومی در تاریخ نوامبر ۱۸۹۴م در کلکته نمایش داد، اما او مایل به ثبت کارش نبود. در سال ۱۸۹۶م گاگلیلمو مارکونی جایزه آنچه که گاها به عنوان اولین حق ثبت اختراع رادیو در دنیا با شماره (حق ثبت اختراع بریتانیا ۱۲۰۳۹ از آن یاد می‌شود، را دریافت کرد، بهبود در ارسال ضربه‌های الکتریکی و سیگنالها و در نتیجه بهبود دستگاهها.
در سال ۱۸۹۷م در ایالات متحده برخی پیشرفتهای کلیدی در رادیو توسط نیکولا تسلا بوجود آمد و به نام او ثبت شد. در سال ۱۹۰۴م دفتر ثبت اختراع ایالات متحده احتمالا به دلیل پشتیبانهای مالی مارکونی که شامل توماس ادیسون و اندریو کارنجی می‌شد، تصمیم گرفت که حق ثبت اختراع رادیو را به مارکونی اعطا کند. برخی اعتقاد دارند که دولت ایالات متحده بدین دلیل حق ثبت اختراع را به تسلا نداد که از مجبور شدن به پرداخت حق امتیازی که نیکولا تسلا برای استفاده دولت از حق ثبت اختراعش مطالبه می‌کرد خودداری کند. 
 
در سال ۱۹۰۹م مارکونی به همراه کارل فردیناند براون جایزه نوبل فیزیک را برای تلاشهایی برای ساخت تلگراف بیسیمدریافت کردند. به هرحال کمی بعد از مرگ تسلا در سال ۱۹۴۳م اختراع تسلا (شماره ۶۴۵۵۷۶) توسط دادگاه عالی ایالات متحده به وضع اول بازگشت. این تصمیم بر این اساس گرفته شده بود که تسلا کارهایی را پیش از حق ثبت مارکونی انجام داده بود. برخی معتقدند که این کار احتمالا به دلایل مالی انجام شده است تا دولت بتواند از پرداخت خساراتی که شرکت مارکونی ادعا می کرد که به دلیل استفاده اختراعش در جریان جنگ اول باید دریافت کند، سر باز زند. برخی حدس می‌زنند که دولت در ابتدا حق ثبت اختراع را به ماکونی داد تا هر گونه ادعای تسلا را برای جبران خساراتش بی اعتبار کند.
مارکونی اولین کارخانه بی سیم را در جهان در خیابان هال ، در چلمسفورد انگلستان در سال ۱۸۹۸م افتتاح کرد و حدود ۵۰ نفر را نیز استخدام کرد. در حوالی ۱۹۰۰م تسلا برج واردنکلیف را افتتاح کرد و شروع به تبلیغ خدمات آن کرد. در سال ۱۹۰۳ ساختمان برج تقریبا کامل شد. نظرات مختلفی وجود دارد که چگونه تسلا قصد داشت به اهداف این سیستم (آنگونه که بیان شده یک سیستم ۲۰۰ کیلو واتی) بی سیم دست یابد. تسلا ادعا کرد که واردنکلیف به عنوان بخشی از سیستم انتقال جهانی ، قابلیت دریافت و ارسال مطمئن چند کاناله اطلاعات ، جهتیابی جهانی ، هماهنگی زمان و یک سیستم جهانی موقعیت را دارا خواهد بود.
اختراع بزرگ بعدی آشکار ساز تیوب خلا بود که توسط تیمی از مهندسین وستینگهاوس ساخته شد. در شب کریسمس سال ۱۹۰۶م ، ریجینالد فسندن (با استفاده از مدار بازز) اولین ارسال صوتی رادیویی را از برنت راک ، ماساچوست انجام داد. کشتیهای روی دریا امواج ارسال شده‌ای را شنیدند که شامل صدای فسندن در حال نواختن آواز اوه شب مقدس با ویلون و خواندن متنی از انجیل بود. اولین برنامه خبری رادیویی توسط ایستگاه ۸MK در میشیگان در ۳۱ آگوست ۱۹۲۰م ارسال شد. اولین پخش بی سیم منظم برنامه‌های سرگرمی جهان در سال ۱۹۲۲م از مرکز تحقیقاتی مارکونی در ریتل نزدیک چلمسفورد ، انگلستان شروع شد که مکان اولین کارخانه بی سیم نیز بود.
رادیوهای اولیه تمامی توان فرستنده را از طریق یک میکروفن کربنی ارسال می کردند. درحالی که برخی از رادیوها از نوعی تقویت جریان الکتریکی یا باتری استفاده می‌کردند، از اواسط دهه ۱۹۲۰م اکثر انواع گیرنده‌ها دستگاههای کریستالی بودند. در دهه ۱۹۲۰م تیوبهای خلا تقویت کننده منجر به انقلابی در گیرنده‌های رادیویی و فرستنده‌های رادیویی شد. بین سالهای ۱۸۸۶م و ۱۸۸۸م ، هاینریش رودلف هرتز برای اولین بار تئوری ماکسول را از طریق آزمایشاتش تأیید کرد. آزمایشات وی نشان می‌دادند که تشعشعات رادیویی تمامی خواص امواج (که امروزه امواج هرتز خوانده می‌شوند) را دارا هستند، و کشف کرد که معادلات الکترومغناطیس را می‌توان به صورت معادلات مشتقات جزئی بازنویسی کرد که معادلات موج نامیده شد. 
ماهیت امواج رادیویی 
هر اتم از الکترون و نوترون تشکیل شده است. نوترون و پروتون در مرکز قرار گرفته‌اند و هسته اتم را تشکیل می‌دهند و الکترونها اطراف هسته می‌چرخند. هسته بعضی از اتم‌ها به دلیل پروتونهای آنها خنثی می‌شود. دارای حرکت وضعی هستند. یعنی به دور محور خود می‌چرخند. این نوع حرکت را حرکت اسپنی می‌گویند، که ویژگیهای طبیعی هسته‌ها است. همچنین هسته به دلیل وجود پروتون دارای بار مثبت هست و از هر ذره بارداری که حرکت داشته باشد‌، فیزیک امواج الکترومغناطیس تابش می‌شود.
بطور کلی فیزیک امواج ، از جمله فیزیک امواج الکترومغناطیسی دارای فرکانس هستند. در اینجا فرکانس به معنی تعداد نوسانهای میدان الکتریکی یا مغناطیسی در واحد زمان از هر نقطه از فضا است. اگر نیروی محرکی را با فرکانس یکسان با فرکانس طبیعی نوسانگر بکار ببریم دامنه حرکت نوسانی یعنی حداکثر فاصله‌ای تا نقطه‌ای از موج از مرکز تعادل می‌گیرد افزایش می‌یابد، که این پدیده را تشدید می‌گویند. امواج رادیو نوعی از تشعشعات الکترومغناطیسی هستند و هنگامی بوجود میآیند که یک شی باردار شده با فرکانسی که در بخش فرکانس رادیویی (RF) طیف الکترومغناطیسی قرار دارد شتاب بگیرد. این محدوده فرکانس از ده ها هرتز تا چند گیگا هرتز تغییر میکند. تشعشعات الکترومغناطیسی توسط نوسانات میدانهای الکتریکی و مغناطیسی انتشار مییابند و از طریق هوا و نیز خلا به همان خوبی عبور میکنند و نیازی به واسطه انتقال ندارند. در مقابل، دیگر انواع تشعشعات الکترومغناطیسی با فرکانس هایی بالای محدوده RF به این شرح اند: اشعه گاما، اشعه X و مادون قرمز، ماوراء بنفش و نور مرئی. وقتی که امواج رادیویی از یک سیم عبور می‌کنند، میدان الکتریکی و مغناطیسی متغیر آنها (بر حسب شکل سیم) جریان و ولتاژی متناوب در سیم القا می‌کنند. این جریان و ولتاژ را میتوان به سیگنالهای صوتی و دیگر انواع سیگنال تبدیل کرد که اطلاعات را انتقال دهند. با وجودی که واژه رادیو برای توصیف این پدیده به کار میرود، ارسال داده‌هایی که ما به عنوان تلویزیون ، رادیو ، رادار و تلفن می‌شناسیم، همگی در کلاس انتشار فرکانس رادیویی هستند. 


کدینگ MPEGII  در DVB
 
کدینگ MPEGII  برای فشرده سازی تصویر جهت مقاصد  DVBکه تصویر به  صورت  Stream(دنباله پیوسته از تصاویر) منتقل می شود بسیار مناسب است، چون با هر بار بافر شدن حدود ۱۲ تصویر،  قابلیت شروع پخش دارد.  درزیر تکنیک های کدینگ MPEGII مورد بررسی قرار گرفته است .
می دانیم که هر تصویر رنگی از ترکیب سه تصویر RGB (قرمز، سبز، آبی) تشکیل شده است  که هر کدام نقش ایجاد یک رنگ از سه رنگ اصلی را در صفحه دارند.  ولی چشم ما نسبت به مولفه‌های فرکانس بالای رنگ‌ها که نقش ایجاد مرزهای تصاویر را دارند، حساسیت کمتری نشان می دهد و به مولفه‌های فرکانس بالای شدت رنگ (Luminance) حساسیت بیشتری نشان می دهد.  به این جهت ابتدا سه لایه RGB  تصویر به سه لایه دیگر مثلاLuminance، قرمز‌-سبز(RG)  وآبی-زرد (BY)  تبدیل می شوند، که  luminanceبا دقت بالاتری  کد شده و مولفه‌های بیشتری از آن نگه داشته می شوند  ولی دو تصویر دیگر با ذقت کمتر کد شده و فقط مولفه‌های قرکانس پایین تر منتقل  می شوند.
سپس تصویر به بلوک های ۸×۸ تقسیم شده ۸ Pixel Blocks)×۸) و از هر یک از این بلوک ها تبدیل DCTII (Discrete Cosine Transform Type 2) گرفته می‌شود. تبدیل DCTII یک نوع تبدیل فوریه کسینوسی است که در آن از توابع پایه کسینوسی که به اندازه ½ شبفت یافته‌اند استفاده می شود. یعنی از توابع متعامد  استفاده می کنیم. به علت خاصیت فشرده سازی انرژی تصویر (Energy Compaction)   در DCTII فقط یک سری از مولفه‌های اول این تبدیل برای بازسازی با دقت خوبی کافی است. این مقادیر کافی و اینکه چه مولفه هایی از تصویر را نگه داریم با مقایسه انژری  تبدیل و انژری تصویر به صور ت هوشمند برای هر بلوک توسط کد مشخص می شود.
 حال نتیجه یک ماتریس ۸×۸ از تبدیل است که بسیاری از مقادیر صفر است که با پیمایش به صورت زیکزاگ به یک رشته ی عددی تبدیل می شود و این رشته ابتدا Quantize می شود تا Bit rate پایین بیاید و نتیجه هم به نوبه خود به روش های آماری فشرده می شود (مانند فاکتور گرفتن از یک مقدار تکرار شده و ….)درضمن دراین نوع کدک باید هر بلوک ،هر تصویر و … یک Header داشته باشد تا محدوده آن را مشخص کند و توصیف دقیق از پارامترهای آن قسمت ارائه می کند.
بعد از فشرده سازی تصویر به فشرده سازی فیلم می رسیم ،می دانیم که یک فیلم از تعدادی (حدود ۲۴ تا ۳۰ بستگی دارد به نوع سیستم مانند Pal،NTSC و …) فریم تشکیل شده که پشت سر هم نمایش داده می شوند ولی انتقال این حجم از اطلاعات بسیار پرخرج است و درضمن  بسیاری از این اطلاعات اضافی است (مثلا اگر تصویری از یک فیلم یک ثانیه تغییر نکند) بدین منظور سعی می کند فقط بلوک های جدید را و تغییرات مکان بلوک های قبلی را (بجای خود آنها) منتقل کنیم ولی انتقال تغییرات به تنهایی هم خود  خطرناک است و به علت آشفتگی خطوط انتقال اگر کوچکترین distortion ایجاد شود باعث از بین رفتن کل فریم های بعدی می شود ،بدین منظور سه نوع فریم ر اتعریف می کنیم B،P،I .
 I Frame: فریم اصلی که حاوی اطلاعات  کامل است به صورت فشرده سازی تصویر 
P Frame: فریم فرعی است که تغییرات را نسبت به فریم P یا I  درخود ذخیره کرده (به صورت مختصر تغییرات )و فقط بلوک های جدید ،به صورت کامل فرستاده می شوند.
B Frame: فریم میانی است که تغییرات را نسبت به فریم P یا I قبلی و P یا I بعدی منتقل می کند و به این دلیل از نوع P فشرده تر است ولی آسیب پذیر نیز هست.
نوع کدک هر فریم درr آن فریم ذکر می شود تامشکلی پیش نیاید و تعداد فریم های اصلی و غیره …  بستگی به نوع کدک و … دارد که به صور ت هوشمند است و برای هر گروه از تصاویر IوP،B، وابسته یک Header  مناسب درنظر گرفته میشود تا درگیرنده به صورت مناسبEncode  می شود (درهر گروه از تصاویر یک I Frame، ۲ یا ۳ P Frame   و مابقی B Frame  است ) فرستادن این تصاویر نیز به ترتیب اصلی نیست بلکه مثلا اگر ترتیب اصلی به صورت IBBP فرستاده می شود که درگیرنده بتوان به خوبی B Frame  ها را بصورت علی و Reconstruct کرد و محل اصلی فریم درآن گروه هم در Header فریم ها ذکر میشود.

عتیقه زیرخاکی گنج