• بازدید : 62 views
  • بدون نظر
این فایل در ۱۳صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

در سال ۱۹۱۱، كامرلينگ اونس  هنگام كار كردن در آزمايشگاه دماي پايين خود كشف كرد كه در دماي چند درجه بالاي صفر مطلق، k 2/4، جريان الكتريسيته مي تواند بدون هيچ اتلاف اختلاف پتانسيل در فلز جيوه جريان پيدا كند. او اين واقعه منحصر به فرد را ابررسانايي  ناميد. كامرينگ در سخنراني نوبل سال ۱۹۱۳ گزارش داد كه حالت ابررسانايي مي تواند به وسيله اعمال ميدان مغناطيسي به اندازه كافي بزرگ از بين رود. 
در حالي كه يك جريان القاء شده در يك حلقه بسته ابررسانا به مدت زمان فوق العاده زيادي باقي مي ماند و از بين نمي رود. او اين رخداد را به طور عملي با آغاز يك جريان ابررساني در يك سيم پيچ در آزمايشگاه ليدن و سپس حمل سيم پيچ همراه با سرد كننده‌اي كه آن را سرد نگه مي‌داشت، به دانشگاه كمنويج به عموم نشان داد. بعد از كشف، ابررسانايي در بيش از يك هزار فلز، آلياژ، تركيبات و حتي شبه رساناها يافت شد. [۱]، اما هيچ نظريه اي براي توضيح ابررسانايي در طول ۴۶ سال بعد از كشف ارائه نگرديد. اولين دليل آن مي تواند اين باشد كه جامعه فيزيك تا حدود ۲۰ سال مباني علمي لازم براي ارائه راه حل براي اين مساله را نداشت: تئوري كوانتم فلزات معمولي. دوم اين كه تا سال ۱۹۳۳، هيچ آزمايش اساسي در اين زمينه انجام نشد.
در اين سال مايسنو و اوشنفلو گفتند كه يك ابررسانا نه تنها در برابر عبور جريان مقاومت صفر دارد،بلكه به‌طور هم‌زمان‌ خاصيت ديامغناطيس‌نيز از خود نشان مي‌دهد.در سال۱۹۳۴، گورتر و كايسيمير  مدل دو مشاوره‌اي را ارائه دادند. 
طبق اين مدل ابررسانا از دو نوع الكترون آزاد تشكيل شده:۱- ابرالكترون (n2) 2- الكترون‌هاي معمولي(nn)با افزايش دما از صفر تا Tc چگالي الكترون‌هاي ابررسانشي كاهش و به چگالي الكترون‌هاي معمولي اضافه مي شود و در دماي انتقال تمام الكترون ها به صورت الكترون هاي معمولي در مي آيند.
سوم اينكه، وقتي مباني علمي لازم بدست آمد، به زودي واضح شد كه انرژي مشخصه وابسته به تشكيل ابررسانايي بسيار كوچك مي باشد، حدود يك ميليونيم انرژي الكتروني مشخصه حالت عادي، بنابراين نظريه پردازان توجه شان را به توسعه يك تفسير رويدادي از جريان ابررسانايي جلب كردند. اين مسير را لاندئو  رهبري مي كرد. كسي كه در سال ۱۹۵۳ به همراه گينزبرگ  يك تئوري پديده شناختي را مطرح كردند و يك سري معادلات را فرمول بندي كردند، اما هرگز نتوانستند علت رخ دادن اين پديده را توضيح دهند.[۲] 
يك كليد راهنما در سال ۱۹۵۰ ميلادي بدست آمد، وقتي كه محققان در دانشگاه روتگزر كشف كردند كه دماي انتقال به حالت ابررسانايي سرب با عكس M  ارتباط دارد. M.M جرم ايزوتوپ سرب است. از آنجا كه انرژي الرزشي شبكه همان بستگي را با M   دارد، كوانتاي پايه آنها، فونون ها، بايد نقشي در ظهور حالت ابررسانايي داشته باشند. سرانجام در سال ۱۹۵۷، سه فيزيك دان به نام‌هاي باردين، كوپر و شيرفر  نظريه ميكروسكوپي خود را ارائه كردند كه بعدا به نام تئوري BCS شناخته شد. 
در سال ۱۹۶۵ نقش فونونها در دماي گذار ابررسانايي در اثر ايزوتوپ تاييدي بر نظريه BCS بود. همچنين كوانتش شار و جريان تونلي شاهدان ديگري بر باور اين نظريه بودند. 
سومين رخداد مهم در تاريخ ابررسانايي در سال ۱۹۸۶ اتفاق افتاد. تا اين سال دانشمندان تلاش زيادي را مصروف كشف ابررسانا با دماي انتقال بالاتر كردند. ولي تنها ثمره اين تلاش‌ها ماده   با k23بود كه در سال۱۹۷۳كشف شد. تا اينكه در سال۱۹۸۶، بدنور و مولر  در حال كار كردن از آزمايشگاه IBM نزديك شهر زوريخ سوئيس، مقاله اي با عنوان« امكان در رساناي دماي بالا در سيستم “Ba-La-Cu-O” منتشر كردند.[؟ ] 
اين كشف باعث ايجاد زمينه اي جديد در علم فيزيك شد: مطالعه ابررساناهاي دماي بالا در سال ۱۹۸۷ اين دو دانشمند با فرض اينكه مواد با اثر جان تلر  مشخص نيز مي توانند ابررساناهايي با دماي گذار بالا توليد كنند، اكسيد نيكلي را بررسي كردند، كه ابررسانايي را نشان نداد سپس آنها اكسيدهاي مس را مورد بررسي قرار دادند،  واقع در هشت وجهي متشكل از اتمهاي اكسيژن، اثر جان تلر بزرگي از خود نشان مي داد. آنها نمونه هايي از مس- لانتانيوم- باريم در اختيار داشتند كه بر خلاف پيشگويي نظريه BCS اوليه، دماهاي گذار بالاتر از K 35 را نشان مي دادند. طي مدت زمان كوتاهي
 Y-Ba-Cu-O (YBCO يا ۱۲۳Y) با دماي گذار بالاي K 80 ساخته شد.[۲و۴]
از آنجايي كه كار با نيتروژن مايع راحت تر و كم هزينه تر از كار با هليم مايع مي باشد، كشف اين ابررساناها تحول بزرگي در زمينه تحقيقاتي بوجود آورد، مطالعه ابرساناهاي دماي بالا چنان گسترش يافته است كه محققان بسياري به دنبال نظريه ميكروسكوپي براي توجيه خواص غير عادي اين مواد هستند.
در سال ۱۹۸۸ دو دسته تركيبات جديد ابررسانايي كشف شدند اين تركيبات عبارت بودند از Bi-Sr-Ca-Cu-O(BSCCO) وTi-Ba-Ca-Cu-O(TBCCO) كه مانند۱۲۳Y شامل دسته صفحات  بودند. به دنبال آن در سال ۱۹۹۳ تركيبات اكسيد جيوه يافت شدند كه دماي گذار آنها براي فازهاي مختلف بين ۹۴ تا ۱۶۵ كلوين است. دماي گذار  در فشار اتمسفر، K 135 است كه در فشار بالاتر به بالاي K 60 اهم مي رسد[۵ و۲].
ابررساناهاي دماي بالا همه در چند خصوصيات اصلي مشترك اند: ناهمسانگردند، ساختار بلوري لايه لايه دارند و در ساختار آنها صفحات  نقش اصلي را بازي مي كند. بي شك پديده ابررسانايي يكي از مسائل مهم و مورد علاقه علم فيزيك است كه تا كنون هشت جايزه نوبل كه به اين موضوع اختصاص يافته در هيچ موضوع ديگري سابقه ندارد.
۱-۲ ساختار بلوري سيستم بيسموت(BSCCO)
فازهاي اصلي ابررسانايي موجود در سيستم بيسموت عبارتند از :  مشهور به ۲۲۰۱، با دماي گذار حدود  ،  معروف به ۲۲۱۲ با دماي گذار  ،  يا ۲۲۲۳ با دماي گذار  .
اين تركيبات ابرشبكه هايي چارگوشي  يا راستگوشي و ساختار لايه اي دارند. در ساختار اين تركيبات مابين صفحات  كاتيونهاي قليايي خاكي مانندCa مي توانند قرار داشته باشد، اين مجموعه صفحات و كاتيونهاي بين آنها بوسيله لايه هاي BiO وSrO از يكديگر جدا مي‌شوند.(شكل۱-۱) 
اين تركيبات در دماي اتاق رسانا نيستند، ساختار اين تركيبات بسيار ناهمسانگرد است، ولي در زير دماي گذارشان ابررسانا مي شوند. حامل هاي بار در اين تركيبات حفره است[۷] و در لايه هاي Cu-O حركت مي‌كنند كه ناشي از كمبود اكسيژن در لايه‌هايBi-O مي باشند[۸]، اكنون ساختار بلوري  اين تركيبات را به طور مختصر بررسي مي كنيم.
تركيب  : ساختار شبه چارگوشي و با ابعاد ۳A 4/24 * 9/3 * 9/3 دارد. اتمهاي مس در اين ساختار در يك هم آرايي ۸ تايي قرار دارند. اتمهاي اكسيژن‌در مكانهاي ۱O و ۲O در شكل(۱-۱)، قابل مشاهده است كه مس و ۱O در صفحات با فاصله A 9/1 = 1Cu-O در همارايي مربعي قرار دارند و اتمهاي ۲O درست بالا و پايين هر اتم مس در فاصله A 6/2  قرار گرفته اند. اين مجموعه يك هشت وجهي ۶CuO را تشكيل مي دهد. صفحه  در ميان صفحات SrO قرار گرفته است. 
فاصله ميانگين A 7/2 = Sr-O و دو لايه اي هاي ۲O2Bi مجموعه Sr-Cu-Sr را احاطه كرده اند. بيسموت در يك همارايي هشت وجهي واپيچيده قرار دارد. طول چهار پيوند  در صفحه بين A2/2 تا A 9/2 و طول شش پيوند كه دو لايه سازنده دو لايه ايهاي ۲O2Bi را متصل مي كنند از A3 بزرگتر است. اين پيوند، بلند و ضعيف و به موازات محور C است و در همه فازهاي ابررساناي سيستم با پايه بيسموت وجود دارد.[۹]
  • بازدید : 52 views
  • بدون نظر

خرید و دانلود فایل تحقیق سیستم های ذخیره ساز انرژی رو براتون گذاشتم.

دانلود این فایل می تواند کمک ویژه ای به شما در تکمیل یک پایان نامه ی کامل و قابل قبول و ارایه و دفاع از آن در سمینار مربوطه باشد.
این تحقیق در قالب ۱۰ صفحه ورد قابل ویرایش برای شما دوستان عزیز آماده شده است.
برخی از عناوین موجود در این فایل :
۱- ابررسانایی
۲- كاربردهاي ابر رسانايي
۳-SMES چیست؟
۴- SMES ومدل سازی آن
و بسیاری موارد دیگر…
امیدوارم این فایل مورد استفاده شما دوستان عزیز قرار بگیره.

مقدمه:

در چند دهه ی اخیر سیستم های ذخیره ساز انرژی با انگیزه های متفاوتی به منظور بهبود عملکرد سیستم قدرت، مورد توجه قرار گرفته اند.بطورمعمول در سیستم قدرت بین قدرتهای الکتریکی تولیدی و مصرفی تعادل لحظه ای برقرار است و هیچگونه ذخیره انرژی در آن صورت نمی گیرد .بنابراین لازم است میزان تولید شبکه، منحنی  مصرف منطقه را تغقیب کند. واضح است بهره برداری از سیستم بدین طریق، با توجه به شکل متعارف منحنی مصرف غیر اقتصادی است.

استفاده از ذخیره ساری های انرژی با ظرفیت بالا به منظور تراز ساری منحنی مصرف و افزایش ضریب بار، از اولین کاربردهای ذخیره انرژی در سیستم قدرت در جهت بهره برداری اقتصادی می باشد.

علاوه بر این،اغتشاشهای مختلف در شبکه ( تغییرات ناگهانی بار، قطع و وصل خطوط انتقال،…) خارج شدن سیستم از نقطه تعادل را به دنبال دارد. در این شرایط ابتدا از محل انرژی جنبشی محور ژنراتورهای سنکرون انرژی برداشت می شود، سپس حلقه های کنترل سیستم فعال شده و تعادل را بر قرار می سازند. این روند، نوسان متغیرهای مختلف مانند فرکانس، توان الکتریکی روی خطوط و…را موجب می شود که مشکلات مختلفی را در بهره برداری از سیستم قدرت به دنبال دارد. هر گاه در سیستم مقداری انرژی ذخیره شده باشد،با مبادله سریع آن با شبکه در مواقع مورد نیاز به حد قابل توجهی می توان مشکلات فوق را کاهش داد.به عبارت دیگر، ذخیره ساز انرژی را می توان  در بهبود عملکرد دینامیکی سیستم نیز بکار برد.

از اوایل دههً هفتاد مفهوم ذخیره سازی انرژی الکتریکی به شکل مغناطیسی مورد توجه قرار گرفت. با ظهور تکنولژی ابر رسانایی، کاربردهای گوناگونی برای این پدیده فیزیکی مطرح شد. ازمعروف ترین این کاربردها می توان به SMESاشاره  کرد. در SMESانرژی در یک سیم پیج با اندوکتاس بزرگ که از ابر رسانا ساخته شده است، ذخیره می شود. ویژگی ابر رسانا یی سیم پیچ موجب می شود که راندمان رفت و برگشت فرایند ذخیره انرژی بالا و در حدود  95% باشد. ویژگی راندمان بالای SMESآن را از سایر تکنیکهای ذخیره انرژی متمایز می کند. همچنین از آنجایی که در این تکنیک انرژی از صورت الکتریکی به صورت مغناطیسیو یا بر عکس تبدیل می شود، SMESدارای پاسخ دینامیکی سریع می باشد. بناراین می تواند در جهت بهبود عملکرد دینامیکی نیز بکار رود. معمولا واحدهای ابر رسانایی ذخیره سازی انرژی را به دو گونه ( MWh 500 ظرفیت بالا    ( جهت ترا سازی منحنی مصرف، و ظرفیت پایین (چندین مگا ژول) به منظور افزایش میرایی نوسانات و بهبود پایداری سیستم می سازند.

بطور خلاصه مهم ترین قابلیتSEMS جداسازی و استقلال تولید از مصرف است که این امر مزایای متعددی از قبیل بهره برداری اقتصادی، بهبود عملکرد دینامیکی و کاهش آلودگی را به دنبال دارد.

  • بازدید : 72 views
  • بدون نظر
این فایل در ۴۷صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

در دهه ۶۰ ظرفیت تولید انرژی الکتریسیته در آمریکا تقریبا دو برابر شد و میزان ۱۷۵GW به ۳۲۵GW رسید ( هر گیگاوات معادل ۱۰۹ وات است . ) پس میزان در سال ۱۹۷۴ به ۴۷۴GW و تا سال ۱۹۸۰ به ۶۰۰GW رسیده بود . در پایان سال ۱۹۹۳ ، از ۷۰۰GW نیز گذشت . پیش بینی می شود که تا سال ۲۰۱۰ تولید باید به میزان ۲۱۰GW افزایش یابد که در نتیجه میزان مصرف برق آمریکا به یک TW می رسد ( هر تراوات ۱۰۱۲ وات است . ) . تنها ۲۰% ظرفیت فوق در حال احداث است .
مصرف رو به رشد الکتریسته معمولا بیشتر از تولید ناخالص داخلی است . با حرکت به سوی انحصار زدایی و رقابت فشرده این رشد باید به دقت پیش بینی شود . نظارت بر رعایت حریم خط انتقال و سرمایه گذاریهای کلان ایجاب می کند که رشد مصرف به دقت پیش بینی شود . از آنجایی که این عوامل هم در توزیع و هم در انتقال تاثیر گذارند ، در اینجا بین آنها تمایز قائل نمی شویم و به طور کلی صحبت   می کنیم .
قبل از بحران انرژی سال ۱۹۷۴ ، مصرف الکتریسیته در آمریکا و غرب اروپا در مدت نزیدک به ۱۰ سال دو برابر شد که به معنی رشد سالانه ۷% است . تا چند سال بعد از ۱۹۷۴ ، عوامل متعددی این میزان رشد را به ۳% کاهش داد . در حال حاضر ، میانگین رشد مصرف خانگی در حدود ۲% است . تا سال ۲۰۳۰ این میزان رشد در صورت افزایش مصرف از ۳۰%  فعلی به ۵۰% پیش بینی شده افزایش فوق العاده ای خواهد داشت . افزایش جمعیت و به تبع آن افزایش تراکم باعث افزایش تراکم باعث افزایش این میزان می شود زیرا انرژی الکتریکی کم هزینه ، امن ، و ارزان است . بالا رفتن سطح زندگی مردم نیز عامل موثری در رشد مصرف برق است .
پیش گفتار 
توانمندی شرکتهای خصوصی برق در دو دهه آینده به طور خاص وابسته به بهبود سیستمهای قدرتشان است . می توان کابلهای هوشمندی ساخت که در یافتن مکان خطا مفید باشند و هم بتوانند در مراحل اولیه آن را شناسایی کنند . این باعث می شود رفع خطا در زمان بازبینی ادواری امکان پذیر شود ، پس از آنکه خسارات زیادی به بار آید . در صورتیکه سرمایه و تلاش لازم را برای توشعه و پیشرفت ترانسفورماتورها صرف کنیم می توانیم ترانسفورماتورهای کوچک تری بسازیم . نتیجه مستقیم این اقدام کاهش تلفات است . پیشرفتهای جدید در زمینه حل مشکل تجمع بارهای الکتریکی به دلیل حرکت روغن به مراحل موفقیت آمیزی رسیده است . قادر خواهیم بود الکتریسیته را با کیفیت بهتر به مشتریانی که به کیفیت بالا نیاز دارند برسانیم . محدود کننده های جریان ، نه تنها از سیستم محافظت می کنند بلکه فشار وارد بر کلیدها را کاهش می دهند . 
مواد ابررسانا تلفات توان را کم می کنند و در نتیجه چگالی توان افزایش می یابد . در تولید این مواد دقت خاصی به کار می رود . همانطور که در تولید مواد نمیه رسانا به دلیل مسمومیت زایی شدید انجام می شود . حتی اگر بی خطر بودن این مواد ثابت شود ، همواره عموم مردم در پذیرفتن آن دچار تردیدند و شرکتها باید به موقع به سوالهای آنها پاسخ دهند . افزایش آگاهی مردم در مودر میدانهای الکترومغناطیسی نیز باید مورد توجه قرار گیرد . خودکارسازی در توزیع برق رایح می شود و باعث بهبود تحویل توان می گردد.
هر سیستم قدرتی در آینده باید قابلیتهای زیر را داشته باشد :
با راهبردهای مناسب در عرصه رقابت باقی بماند ؛
خدمات بهتری عرضه کند ؛
مدیریت بهتری برای امکانات خود داشته باشد ؛ 
عمر مقید تجهیزات را افزایش دهد ؛
عیب یابی را بهبود بخشد ؛
با قابلیت اطمینان بالاتر از تجهیزات نگهداری کند .
حال به بررسی تغییراتی که تا سال ۲۰۲۰ به وقوع خواهند رسید ؛ موارد دارای احتمال کمتر را تعیین و بر تغییرات اساسی و محتمل تاکید می کنیم . بیست سال زمان کوتاهی برای مشخص شدن تاثیرات تولید الکتریسیته به صورت غیر متمرکز است ولی سعی می کنیم بعضی از آثار آن را بررسی کنیم .
 
انتقال و توزیع 
اگرچه سابقاً هزینه های هنگفتی برای خطوط انتقال فشار قوی دارای ولتاژ بالاتر از ۳۵kv صرف می شد ، خطوط با ولتاژ کمتر از یا مساوی با ۳۵kv قیمتی حدود ۱ تا ۲ دلار به ازای هر فوت ( ۵۰۰۰ تا ۱۰۰۰۰ دلار به ازای هر مایل ) کابل دارند . بنابراین کلیه طرحهایی که برای شروع به سرمایه گذاری زیاد احتیاج دارند حذف می شوند . ولی با افزایش تقاضا برای قابلیت اطمینان بیشتر ، اتلاف توان کمتر ، هزینه کار و نگهداری پایین و افزایش آگاهی از آثر زیست محیطی میدانهای الکترومغناطیسی و افزایش دوام و طول عمر کابل باید در انتظار طرحهای جدید بود . هر چند که این طرحها به هزینه اولیه زیادی نیاز دارند ، ناگزیر به اجرای آنهاییم .
از حدود ۲۰ تا ۲۵ سال پیش که کابلهای ارزان قیمت به کار رفتند تجارب زیادی به دست آمده است ؛ مثلا اینکه هزینه تعمیر ونگهداری این کابلها نیز زیاد خواهد بود . در مواردی که مدت زمانی کوتاه مورد نیاز است ، هزینه کم اولیه عامل تعیین کننده است . ولی برای برنامه های دراز مدت مواردی مانند قابلیت اطمینان ، دوام ، نگهداری و نصب و هزینه اولیه در سیستم قدرت کاملا مدرن حرف اول را می زند .
از ابتدای پیدایش صنعت برق عایق بندی اهمیت خاص داشته است و رساناهای خوبی مثل مس یا آلومینیوم ستون اصلی تحویل توان بوده اند . در مقیاس کوچک از سدیم استفاده شده است ولی به دلیل اشتعال آن در مجاورت هوا چندان مناسب نیست . ویژگیهای لازم عایق خوب عبارت اند از چگالی کم ، رسانایی نسبتا خوب ، هزینه کم و پایداری شیمیایی . به عبارت مطلوب است که خارج قسمت رسانایی بر چگالی حداکثر باشد . این عدد را می توان بر هزینه تقسیم کرد تا مقایسه ای از لحاظ قیمت نیز انجام شود . در این مقایسه سدیم مناسب به نظر می رسد البته اگر اکسید نمی شد زیرا رسانایی آن ۳/۱ مس و چگالی آن ۹/۱ مس و عدد مورد بحث برای آن ۳ برابر مس است . از آنجایی که برای کابلهای هوایی دی الکتریک اصلی هواست ، قدرت مکانیکی نیز با اهمیت است . در اینجا پلیمرهای رسانا مناسب به نظر می رسند البته از نظر شیمیایی ناپایدارند . در این باره بحث خواهیم کرد .
تحویل توان در بهره وری نقش مهمی دارد که رفته رفته اهمیت آن افزایش می یابد . در نیمه اول قرن حاضر ، افزایش ظرفیت خط انتقال مستقیما متناسب با ظرفیت محدود ژنراتور و نیروگاه بود . به دلیل مسائل اقتصادی و افزایش تقاضا ژنراتورهای دور بالا از ظرفیت و ولتاژ ۱MVA و ۱۰KV در دهه ۱۹۰۰ به ۱۵۰۰MVA و ۲۵KV تغییر کرده اند . با افزایش ظرفیت ژنراتورها و نیروگاهها ظرفیت خطوط انتقال نیز افزایش پیدا کرد . برای کاهش تلفات در خطوطی که اکنون توان بیشتری منتقل می کردند لازم شد که سطوح ولتاژ افزایش یابند . این ولتاژها در آمریکا از ۱۰KV به ۷۶۵KV رسید . لازمه این کار استفاده از ترانسفورماتورهای ظرفیت بالا برای اتصال ژنراتورها به شبکه انتقال بود . در کمتر از یک قرن ، ظرفیت خطوط انتقال از ۱MVA به بیش از ۱۵۰۰MVA رسید . این حد بالاترین توانی است که به دلیل محدودیت ناشی از قابلیت اطمینان ، روی یک خط می توان انتقال داد . خطر قطع این توان در صورت خرابی خط به همراه مسائل دیگر از مشکلات بزرگ شرکتهای برق است .
مقایسه سیستم انتقال هوایی و زیرزمینی
صرف نظر از هزینه های حریم خط انتقال ، هزینه احداث و نگهداری خطوط هوایی همواره کمتر از خطوط زیرزمینی است . در نواحی پرجمعیت به دلیل پیچیدگی مسئله حریم خطوط انتقال هزینه احداث خطوط هوایی به اندازه خطوط زیرزمینی است . ولی خطوط هوایی منبع اصلی انتقال توان نیستند . انواع کابلهای انتقال ظرفیت بالا به خصوص کابلهای زیرزمینی باید با صرف هزینه زیاد خنک شوند . خطوط هوایی به میزان کافی با هوای اطراف خود که نقش دی الکتریک نیز دارند خنک می شوند . بر خلاف هزینه کم خطوط هوایی ، به دلیل مسائل علمی ، زیست محیطی و زیبایی شناختی در آینده درصد کمتری از توان با خطوط هوایی منتقل خواهد شد . بنابراین ، به جز بهینه سازی خطوط هوایی موجود ، بیشتر توان انتقالی در آینده به صورت زیرزمینی خواهد بود .

عتیقه زیرخاکی گنج