• بازدید : 60 views
  • بدون نظر
این فایل در ۲۵صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

ما یک مسئله الگو برای تقریب های شبه پیوستار ایجاد کردیم که امکان تحلیل های ساده و در عین حال هوشمندانه ی دامنه ی همگرایی مرتبه – بهینه را در حدّ پیوستار هم برای تقریب شبه پیوستار بر پایه ی انرژی و هم تقریب شبه پیوستار شبه – غیر موضعی می دهد . به زبان ساده ، این تحلیل محدود بی مورد فعل و انفعالات همسایه – دوم می شود و حمل یک شبکه مرجع یکپارچه گسترش یافته ، خطی شده است . تخمین های خطای مرتبه – بهینه برای تقریب شبه پیوستار شبه غیر موضعی برای همه ی کُرنش ها تا کُرنش حد ( فیران ) پیوستار برای شکست ، ارائه شدند . این تحلیل که بر پایه ی رفتار آشکار خطای جفت شدگی در فصل مشترک اتمی به پیوستار می باشد ، مرتبط است با تحلیل هایی از خطا ها ، بواسطه ی طرح های اتمی و پیوستار با استفاده از پایداری تقریب شبه پیوستار . 
روش شبه پیوستار ( QC )  ، تکنیکی است برای گرفتن تقریب ها از مدل های کاملاً اتمی برای صلب های بلورین که مقادیر آزادی ضروری برای محاسبه ی تغییر شکل را تا بدست آمدن درستی مطلوب و [ ۶,۸,۹,۱۴,۱۵,۱۶,۱۷,۱۸,۲۰,۲۱,۲۴,۲۷,۳۰,۳۲ ] کاهش می دهد . روش QC ابتدا درجات ( مقادیر ) اتمی آزادی را با استفاده از تقریب خطی دقیق از تغییرات شکلی اتم ، بر حسب ارقام بسیار کوچکتری از اتم های نمونه ، حذف می کند . این تقریب هنوز به لحاظ محاسباتی ممکن و شدنی نیست زیرا اتم های نزدیک مرزهای عنصر با اتم های عنصرهای مجاور در تعادلند . برای دستیابی به یک روش سودمند ، از چگالی انرژی کرنشی استفاده کردیم که با مدل اتمی برای کرنش یکدست     ( قانونِ Cauchy Born ) سازگار است و انرژی اتم ها در یک عنصر از حاصل حجم عنصر و چگالی انرژی کرنش عنصر ، محاسبه شده است . ما در این مقاله دو واریانت QC را تحلیل می کنیم که لانرژی اتمی کل را با استفاده از یک تقریب پیوستار در قسمتی از ماده با نام « منطقه ی پیوستار » ، بطور تقریب بدست می آورد . فرض بر این است که گرادیان تغییر شکل در منطقه ی پیوستار با کندی تغییر می کند و این امر موجب صحّت تقریب پیوستار می گردد . یک مدل اتمی تأکیدی محاسبه پذیرتر برای دامنه ی محاسباتی مورد استفاده قرار گرفته است که نامش « منطقه ی اتمی » است . در این منطقه تمام اتم ها ، اتم های بنیانگر ( نماینده ) هستند ، برای اینکه هیچ محدودیتی در  انواع تغییر شکل  در منطقه ی اتمی وجود نداشته باشد . برای دسیابی به درستی ، منطقی اتمی باید شامل همه ی مناطق دارای تغییر شکل های بسیار متنوع ، مثل نقص مواد ، باشد . روش های مناسبی که مشخص می کنند چه قسمتی از دامنه باید به منظور دستیابی به درستی مطلوب ، برای منطقه ی اتمی تعیین شوند ، در نظر گرفته شدند . [ ۱,۲,۳,۲۳,۲۴,۲۶ ] . دیگر روش هاغی جفت سازی اتم – پیوستار شکل یافتند و در [ ۴,۲۵ ] مورد تحلیل قرار گرفتند . ما در بخش دوم ، یک مسئله ی الگوبرای تقریب های QC ایجاد کردیم و تقریب شبه پیوستار بر پایه ی انرژی ( QCE )  و تقریب شبه – غیر موضعی ( QN1 )  را شرح دادیم . این دو تقریب از یک تقریب غیر پیوستار مشابه استفاده می کنند اما در اینکه چگونه مناطق اتمی و پیوستار را جفت می کنند متفاوتند . ما انرزی های QC مدل خود را از انرژی های QC عمومی با بسط هر تعامل و کشیدن آن به مرحله ی دوم در حدود یک پیکر بندی یکپارپه ، گرفتیم تا بتوانیم تحلیلی ساده امّا روشن گر ارائه دهیم . این مدل به خاطر داشتن عبارات مرتبه اول با یک تقریب هاومونیک ( هماهنگ ) استاندارد فرق می کند . این ها منبع خطای جفت سازی مرتبه ی پیشرو     می باشند و نشانگر رفتار در مرتبه ی غیر خطی هستند . ما همچنین ترجیح دادیم برای حفظ سادگی تحلیل ، به تحلیل شرایط مرزی تناوبی بپردازیم . علاوه بر بدست آوردن تقریب های QCE , QNL  در بخش ۲ ، نتایج پایداری ارائه دهیم که برای بدست آوردن تخمین های خطای مرتبه – بهینه ، از آن استفاده می شود . هدف این مقاله ارائه دادن تحلیل خطا در رابطه با حد پیوستار است ، حدی که در آن فضا گذاری « بین اتمی » و «  فعل و انفعالات بین اتمی » به گونه ای سنجه بندی شده اند که انرژی کل ، هم گرا ( متلاقی ) می شود در حالی که تعداد اتم ها در هر واحد طول تا بینهایت افزایش می یابد . خطای بُرش ( کوته ساری ) در اتم ها در فصل مشترک جفت سازی برای QCE , QNL   بی ترتیب مرتبه ۰ (۱) , ۰ ( ۱/h ) است و این در حالی است که h  فضای بین اتمی است . این مرتبه ، پایینتر است از مرتبه خطای برش  چه در منطقه ی اتمی چه منطقه پیوستار که (  O ( h می باشد. نشان می دهیم که خطای جفت سازی مطابق ، نیز بستگی دارد به « جمع » خطای حذف در اتم ها ، در فصل مشترک جفت سازی اتمی به پیوستار و وقتی خطای برش ( کوته سازی ) در فصل مشترک جمع بسته می شود ، این جمع بواسطه ی لغو عبارات « پایین ترین مرتبه » ، مرتبه  بالاتر O ( h )  را دارد . در بخش ۳ ، خطای « برش » برای تقریب QCE  را به دو بخش تقسیم می کنیم : یک بخش آن بواسطه ی تقریب زدن حد پیوستار با استفاده از تفاضل های محدود . مرتبه ی دوم ( قاعد ه ی ۵ منطقه در یک منطقه ی اتمی و قانون ۳ نقطه در منطقه پیوستار ) و بخش دیگر – بخش مرتبه ی پایین تر – با جفت سازی مناطق اتمی و پیوستار . نتایج « پایدار»مان از تقریب QCE و تخمین      (  O ( h مان را برای خطای مجزاسازیِ از تقریب کردن حد پیوستار بااستفاده از تفاوت های محدود مرتبه  دوم ، یکی کردیم تا یک پیوند ( مقید ) مرتبه ی بهینه برای حصول به این خطا ، ارائه دهیم . پس توانستیم تصویر روشنی از خطای جفت سازی بدست آوریم و مشاهده کنیم که خطای جفت سازی در حد O ( h )  در نُرم گُسسته  L و میزان ( دامنه )/ p )   O ( h در نُرم های  W برای        ∞۱≤ P≤ تلاقی می یابد . با ترکیب کردن دو کران های خطا توانستیم به یک تحلیل کلّی همگرایی برای QCE با د امنه ی O ( h )  در نُرم   L و دامنه ی (/P  O ( h در نُرم های   W دست یابیم . پس علی رغم . خطای برش O ( 1/h )  در نُرم – حداکثر ، دیدیم که جابجایی هنوز در   محدوده ی پیوستار تلاقی می کند . تحقیقی مرتبط با این امر نیز نشان داد که خطا در نُرم   W برای روش QCE ، O ( 1 ) است ، روشی که برای مسئله ای بکار رفت با تعاملات یا فعل و انفعالات هماهنگ و شرایط مرزی Dirichiet  . تحلیل ما پتانسیل های بین اتمی کلی تری و طبقه بزرگ تری از کرنش ها را در خود جای می دهد .همچنین متذکر می شویم که اخیراً نتایج « پایداری » شدیدی را در [ ۱۲ ]  ارائه دادیم که نشان می دهند تقریب QCE برای همه ی کرنش ها تا کرنش حدّ پیوستار برای شکست ثابت نیست . ما در بخش ۴ تحلیلی از مورد QNL ارائه می دهیم . در اینجا نشان       می دهیم که مرتبه تثبیت یافته ی درستی در فصل مشترک جفت سازی ( واسط جفت سازی ) در راستای برقراری تعادل به مرتبه خطای گسسته سازی خدمت می کند و ما متعاقباً قادریم تخمین های خطا ی بهینه بلند مرتبه تری برای تقریب QNL  نسبت به تقر یب QCE ارائه دهیم . نشان         می دهیم که اکنون جابجایی در دامنه ی (  O ( h در نُرم گسسته   L و دامنه ی (  O(h  در نُرم های   W – که h  فضای بین اتمی است – تلاقی پیدا می کند . ans , Ming2 به تخمین های O(h) در نُرم  W برای پتانسیل Lennard – Jones و برای کرنش هایی که محدودند به پیوستن و دورماندن از کرنش حد پیوستار برای شکست ، دست یافتند . ما تخمین های خطای QNL مرتبه بهینه برای نُرم های گسسته   W و   L برای پتانسیل های بین اتمی عمومی تر و برای همه ی کرنش ها تا کرنش حد پیوستار برای شکست را ، که اعتبار تئوریک به کاربرد روش QNL برای حرکت نقص می بخشد ، بدست آوردیم . بنابراین QNL بهره ای دو گانه از یک” دامنه ی بالاتر مرتبه کامل ” از همگرایی در نُرم جابجایی   W می برد و آن اینست که این هم گرایی زمانی ثابت می شود که اطراف هر کرنش یکپارچه ای تا حد شکست پیوستار گسترش می یابد . این مقاله ، تحلیل ما از تأثیر مدل ” اتمی به پیوستار ” را بسط می دهد ، به خطای کل تقریب QCE پرداخته و نیروی خارجی را نیز شامل می شود . تحلیل خطا با توجه به جفت سازی همکنشگرانه ، را در این مقاله بسط دادیم تا خمیدگی میدان کرنش و تقریب QNL را در آن بگنجانیم . ایجاد عبارات خطای همکنشگرانه نشان می دهد که تخمین های خطا از مرتبه بهینه هستند ؛ بویژه ، انتخاب f = o در مورد QCE  و انتخاب یک راه حل همراه با خمیدگی ” ناصفر ” در فصل مشترک در QNL  مطابق است با دامنه های همگرایی . این مقاله دو شیوه ی QC متفاوت که در مهندسی و ریاضیات تکامل یافته اند را به کار می برد . اگر چه مقایسه ی همه ی این شیوه ها در گنجایش این مقاله نیست ، ما تنها به طور خلاصه نتایجی چند در حوزه ی ریاضیات را بیان می کنیم . پیش از این شیوه ی شبه پیوستار QCF بر     پایه ی نیرو را اتخاذ کردیم که دقیقاً انرزی هایی تولید می کند که مطابق با هیچ انرژی کلی دیگر نیست . نشان دادیم که این یک تقریب واقعی است که وقتی تصحیح نیروی     “به کار می رود ، ایجاد می شود و نیز نشان دادیم که QCE برای حل معادلات QCF به طور برهم کنشی ، به عنوان پیش مشروط ساز مؤثر عمل می کند . حتی تخمین خطای (  O ( h را برای QCF با غلبه بر “ناوادارندگی” تقریب ، نیز ثابت کردیم . شیوه های QC بر پایه ی گروه به جای کاربرد تقریب پیوستار، محاسبه ی انرژی را از طریق به دست آوردن تقریبی انرژی کل با استفاده از دسته ای از اتم ها در اطراف هر گروه از شبکه ی خطی ، آسان می کند . در ضمن تقریب های گروه ” بر پایه نیرو ” و گروه “بر پایه ی انرژی ” نشان داده شد که نادرست می باشند ( ۱۹ )  . 
۲٫ تقریب QC خطی تک بعدی . یک شبکه مرجع تک بعدی با فضای  h = 1/N در نظر          می گیریم و جایگاه اتم ها در شبکه مرجع را بدین صورت نشان می دهیم : 

عتیقه زیرخاکی گنج