• بازدید : 54 views
  • بدون نظر
این فایل در ۱۴صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

شیمی فیزیک (Physical chemistry) بخشی از علم شیمی است که در آن ، از اصول و قوانین فیزیکی ، برای حل مسائل شیمیایی استفاده می‌شود. به عبارت دیگر ، هدف از شیمی فیزیک ، فراگیری اصول نظری فیزیک در توجیه پدیده‌های شیمیایی است. برای آشنایی بیشتر با علم شیمی فیزیک ، باید با زیر مجموعه‌های این علم آشنا شویم و اهداف این علم را در دل این زیر مجموعه‌ها بیابیم.
تعیین سمت و سوی واکنش 
ترمودینامیک شیمیایی در عمل ، برقراری چهارچوبی برای تعیین امکان پذیربودن یا خود به خود انجام شدن تحولی فیزیکی یا شیمیایی معین است. به عنوان مثال ، ممکن است به حصول معیاری جهت تعیین امکان پذیر بودن تغییری از یک فاز به فاز دیگر بطور خود به خود مانند تبدیل گرافیت به الماس یا با تعیین سمت و سوی خود به خود انجام شدن واکنشی زیستی که در سلول اتفاق می‌افتد، نظر داشته باشیم.

در حلاجی این نوع مسائل ، چند مفهوم نظری و چند تابع ریاضی دیگر بر مبنای قوانین اول و دوم ترمودینامیک و برحسب توابع انرژی گیبس ابداع شده‌اند که شیوه‌های توانمندی برای دستیابی به پاسخ آن مسائل ، در اختیار قرار داده‌اند. 

تعادل 

پس از تعیین شدن سمت و سوی تحولی طبیعی ، ممکن است علم بر میزبان پیشرفت آن تا رسیدن به تعادل نیز مورد توجه باشد. به عنوان نمونه ، ممکن است حداکثر راندمان تحولی صنعتی یا قابلیت انحلال دی‌اکسید کربن موجود در هوا ، در آبهای طبیعی یا تعیین غلظت تعادلی گروهی از متابولیتها ( Metabolites ) در یک سلول مورد نظر باشد. روشهای ترمودینامیکی ، روابط ریاضی لازم برای محاسبه و تخمین چنین کمیت‌هایی را بدست می‌دهد.

گرچه هدف اصلی در ترمودینامیک شیمیایی ، تجزیه و تحلیل در بررسی امکان خود به خود انجام شدن یک تحول و تعادل می‌باشد، ولی علاوه بر آن ، روشهای ترمودینامیکی به بسیاری از مسائل دیگر نیز قابل تعمیم هستند. مطالعه تعادلهای فاز ، چه در سیستم‌های ایده آل و چه در غیر آن ، پایه و اساس کار برای کاربرد هوشمندانه روشهای استخراج ، تقطیر و تبلور به عملیات متالوژی و درک گونه‌های کانی‌ها در سیستم‌های زمین‌ شناسی می‌باشد. 
تغییرات انرژی 

همین طور ، تغییرات انرژی ، همراه با تحولی فیزیکی یا شیمیایی ، چه به صورت کار و چه به صورت گرما مورد توجه جدی قرار دارند؛ این تحول ممکن است احتراق یک سوخت ، شکافت هسته اورانیوم یا انتقال یک متابولیت در بستر گرادیان غلظت باشد.

مفاهیم و روشهای ترمودینامیکی ، نگرشی قوی برای درک چنان مسائلی را فراهم می آورد که در شیمی فیزیک مورد بررسی قرار می‌گیرند. 

الکتروشیمی 
تمام واکنش‌های شیمیایی ، اساسا ماهیت الکتریکی دارند؛ زیرا الکترونها ، در تمام انواع پیوندهای شیمیایی (به راههای گوناگون) دخالت دارد. اما الکتروشیمی ، بیش ار هر چیز بررسی پدیده های اکسایش- کاهش (Oxidation – Reduction) است. روابط بین تغییر شیمیایی و انرژی الکتریکی ، هم از لحاظ نظری و هم از لحاظ عملی حائز اهمیت است.

از واکنش‌های شیمیایی می‌توان برای تولید انرژی الکتریکی استفاده کرد، (در سلولهایی که “سلولها یا پیلهای ولتایی” یا “سلولهای گالوانی” نامیده می‌شوند) و انرژی الکتریکی را می‌توان برای تبادلات شیمیایی بکار برد (در سلولهای الکترولیتی). علاوه بر این، مطالعه فرایندهای الکتروشیمیایی منجر به فهم و تنظیم قواعد آن گونی از پدیده های اکسایش- کاهش که خارج از این گونه سلولها یا پیلها روی می دهد نیز می‌شود. 

سینتیک شیمیایی (Chemical Kinetic) 

سینتیک شیمیایی عبارت از بررسی سرعت واکنش‌های شیمیایی است. سرعت یک واکنش شیمیایی را عوامل معدودی کنترل می‌کنند. بررسی این عوامل ، راههایی را نشان می‌دهد که در طی آنها ، مواد واکنش‌دهنده به محصول واکنش تبدیل می‌شوند. توضیح تفضیلی مسیر انجام واکنش بر مبنای رفتار اتم‌ها ، مولکول‌ها و یون‌ها را “مکانیسم واکنش” می‌نامیم.

در ترمودینامیک و الکتروشیمی ، کارها پیش‌بینی انجام واکنش بود؛ اما مشاهدات صنعتی ، نتایج ترمودینامیک شیمیایی را به نظر تایید نمی‌کند. در این حالت نبایستی فکر کنیم که پیش بینی ترمودینامیک اشتباه بوده است؛ چون ترمودینامیک کاری با میزان پیشرفت واکنش و نحوه انجام فرایندها ندارد. نظر به اهمیت انجام فرایندها از نظر بهره زمانی ، لازم است که عامل زمان در بررسی فرایندها وارد شود.

به عنوان مثال ، کاتالیزورهای بخصوصی به نام “آنزیم‌ها” در تعیین این که کدام واکنش در سیستمهای زیستی با سرعت قابل ملاحظه به راه بیافتد، عواملی مهم هستند. مثلا مولکول “تری فسفات آدنوزین” (Adnosine triphosphate) از لحاظ ترمودینامیکی در محلولهای آبی ناپایدار بوده و باید هیدرولیز گردیده و به “دی فسفات آدنوزین” و یک فسفات معدنی تجزیه شود. در صورتی که این واکنش در غیاب آنزیمی ویژه ، “آدنوزین تری فسفاتاز” ، بسیار کند می‌باشد.

در واقع همین کنترل ترمودینامیکی سمت و سوی واکنش‌ها به همراه کنترل سرعت آنها توسط آنزیمهاست که موجودیت سیستمی با تعادل بسیار ظریف ، یعنی سلول زنده را مقدور می‌سازد. بیشتر واکنش‌های شیمیایی طی مکانیسمهای چند مرحله‌ای صورت می‌گیرند. هرگز نمی‌توان اطمینان داشت که یک مکانیسم پیشنهاد شده ، بیانگر واقعیت باشد. مکانیسم واکنشها تنها حدس و گمانهایی بر اساس بررسیهای سینتیکی‌اند. 

ارتباط شیمی فیزیک با سایر علوم 

همانطور که عنوان شد و از نام شیمی فیزیک پیداست، این علم ، مسائل و پدیده‌های شیمیایی را با اصول و قوانین فیزیک توجیه می‌کند و ارتباط تنگاتنگی میان شیمی و فیزیک برقرار می‌کند. علاوه بر آن ، روابط بسیار پیچیده شیمیایی با زبان ریاضی ، مرتب و طبقه‌بندی شده و قابل فهم می‌گردد. بسیاری از پدیده‌های زیستی مانند سوخت و ساز مواد غذایی در سلولهای بدن با علم شیمی فیزیک توجیه می‌شود و این ، ارتباط شیمی فیزیک را با زیست شناسی و به تبع آن پزشکی بیان می‌کند.

بسیاری از پدیده های طبیعی که به صورت خود به خودی انجام می‌گیرد، همانند تبدیل خود به خودی الماس به گرافیت ، با علم شیمی فیزیک توجیه می‌شود. 
کاربردهای شیمی فیزیک

ارتباط شیمی فیزیک با سایر علوم ، کاربردهای اقتصادی و اجتماعی این علم را بیان می‌کند. به عنوان مثال ، با مطالعه الکتروشیمی ، به پایه و اساس پدیده‌های طبیعی مانند خوردگی فلزات پی برده و می‌توان از ضررهای اقتصادی و اجتماعی چنین پدیده‌هایی جلوگیری کرده و یا این پدیده‌ها را به مسیری مفید برای جامعه سوق داد. علاوه بر آن ، کاربرد قوانین ترمودینامیک مانند “نقطه اتکیتک” در جلوگیری از ضررهای جانی و مالی پدیده‌های طبیعی مانند یخ بندان بعد از بارش برف ، بسیار مفید می‌باشد (مخلوط کردن برف و نمک بر اساس نقطه اتکیتک(.

فراموش نکنیم که تمامی باطری‌ها و پیلهایی که وسایل زندگی ما با نیروی آنها بکار گرفته می‌شوند، براساس قوانین شیمی فیزیک ساخته شده‌اند.
  • بازدید : 56 views
  • بدون نظر
این فایل در ۸۷صفحه قابل ویرایش تهی شده وشامل موارد زیر است:

الكتروشيمي ،  شاخه اي از علم شيمي است و به مطالعه پديده هايي مي پردازد ، كه در نتيجه تماس يك هدايت كننده الكتروني و يك هدايت كننده الكتروليتي رخ مي دهد . مهمترين مباحث الكتروشيمي به فرآيندهاي انجام يافته روي الكترود ها هنگام توليد جريان الكتريسيته در پيل الكتروشيميايي و يا عبور آن از محلول و انجام پديده تجزيه الكتريكي معروف به الكتروليز مي باشد .
بسياري از مفاهيمي كه امروزه به عنوان اصول شيمي در جهان پذيرفته شده اند ، از الكتروشيمي نشأت گرفته اند و توسعه اي كه در بسياري از زمينه ها نظير جلوگيري از خوردگي ، توليد نيرو ، بيوشيمي ، زيست شناسي سلولي ، در آينده به دست خواهد آمد ، همه بستگي زيادي به استفاده از اصول الكتروشيمي دارند 
با اجراي الكتروسنتزها ، مي توان محصولات آلي متعددي را بدست آورد . در واقع دامنه كاربرد الكتروشيمي ، در سنتز مواد آلي بسيار وسيع است . بطور كلي ، كليه اجسا مي كه قادر به دريافت الكترون ويا از دست دادن الكترون باشند، بايد آمادگي مشاركت در يك عمل الكتروليز را داشته باشند . به عبارت ديگر ، تمام واكنشهاي اكسيداسيون ـ احياء مواد آلي به روش شيميايي بايد به طريق الكتروشيمي نيز امكان پذير باشند . الكتروشيمي آلي سابقه اي بسيار قديمي دارد . در سال ۱۸۳۴ ، فاراده تشكيل اتان از اكسيداسيون يون استات در محيط آبي را گزارش كرد [۳]

۲CH 3COO – ۲e                         2CO2 + C2 H 6                                                                                                                                                               
در سال ۱۸۴۳ الكتروليز معروف كلب ¹ انجام گرفت كه واكنش اكسيداسيون كربوكسيليك اسيدها در حلال دي متيل فرماميد با آندي از جنس پلاتين بود . [۴]

 2RCOO – ۲e        2CO2 + R-R                                                                                                                                                                                                                                                                

در اين واكنش نمك كربوكسيليك اكسيد مي شود و يك هيدروكربن توليد مي گردد. يك تركيب آلي در اثر اكسيداسيون ، نهايتاٌ به دي اكسيد كربن و آب تبديل ميشود ، حال آنكه اين دو محصول واقعا آن چيزي نمي باشند كه ما مي خواهيم از يك واكنش الكتروشيميايي به دست آوريم . وقتي به واكنش كلب نگاه مي كنيم ، مي بينيم كه حلال ، درجه حرارت و غلظت واكنشگرها مي تواند بر نتيجه سنتز تأثير بگذارد .
در ابتداي قرن ۲۰ ، تغيير ماهيت بسياري از مواد آلي ، به طريق الكتروشيمي بررسي گرديد . در سال ۱۹۴۰ ميلادي در يك بررسي انجام شده توسط فيچتر ² [۵] اطلاعات مهمي در ارتباط با سنتزهاي الكتروشيميايي ارائه شده است و در سال ۱۹۵۲ ميلادي اكسيداسيون آندي فوران بعنوان يك واكنش كليدي انجام شد و به تبع آن يك سري واكنشهاي سنتزي ديگر نيز صورت گرفت [۶]
اين واكنشها از اولين موارد واكنشهاي الكتروشيميايي بر روي تركيبات آلي بوده و تحت عنوان سنتزهاي الكتروارگانيك شناخته مي شوند .
با اين وجود ، الكتروشيمي به عنوان يك روش متداول در سنتز تركيبات آلي بكار گرفته نشد. مي توان عدم توجه به توسعه سنتزهاي الكتروارگانيك را به علل زير نسبت داد : 
۱-دلايل تكنيكي : تحقيقات با امكانات ناقص صورت مي پذيرفت . بدين معني كه الكترودها را در يك محلول الكتروليت شامل مواد آلي غوطه ور مي ساختند و الكــترودها را به يك باتري متصل مي ساختــند و در نتيــجه ، در اكثر موارد ، مخـلوطي از چند جسم ، با رانــــدمان كم حاصل مي گشت.
۲- دلايل نظري : توجيه چگونگي سرعت واكنشهاي انجام يافته ، در الكترودها از ابتداي سال ۱۹۳۰ معمول گرديد و مطالعه سيستماتيك ، مخصوصاٌ تحقيق در خصوص مكانيسم واكنشهاي آلي از سال ۱۹۵۰ توسعه يافت .                                                                                                    
۳- فقدان تجهيزات : ضرورت تحميل يك پتانسيل معين به منظور اجراي يك واكنش خاص  در       سال ۱۹۰۰ اعلام گرديد ، ولي به علت فقدان تجهيزات ، به ناچار مطالعات تجربي فقط به صورت مقايسه اي انجام مي گرفت و از سال ۱۹۵۰ به بعد سنتزهاي الكتروارگانيك با توسعه وسايل الكتروني  و ظهور پتانسيواستات ها كه امكان مي دهند الكتروليز را در هر پتانسيل دلخواهي به صورت ثابت اجراء ساخت ، پيشرفت چشمگير و پر دامنه اي را آغاز نمود . 
در سال ۱۹۷۰ مفاهيم و روشهاي جديد ديگري در زمينه سنتزهاي الكتروارگانيك بوجود آمد. اين مفاهيم شامل تبديل دو قطبي ارائه شده توسط سيبج ¹ و كوري ² است كه از اهميت اساسي برخوردار بوده و به طور گسترده مورد توجه قرار گرفته است . از سال ۱۹۸۰ با روشن شدن كارايي روشهاي الكتروشيميايي در سنتز تركيبات آلي ، بسياري از روشهاي شيميايي با روشهاي مستقيم يا غير مستقيم الكتروشيميايي جايگزين شدند كه در روشهاي غير مستقيم از حا ملين الكترون استفاده مي شود 
پيشرفت تكنولوژي الكتروليز نيز در اين سالها انجام شد . اين پيشرفت ها شامل بوجود آمدن انواع مختلف سل ها و روشهاي اجرايي گوناگون است ، كه سنتز الكتروشيميايي تركيبات آلي پيچيده را ممكن مي سازد . براي كسب اطلاعات بيشتر در رابطه با سنتزهاي الكتروارگانيك منابع نسبتاٌ زيادي وجود دارد 

عتیقه زیرخاکی گنج