• بازدید : 46 views
  • بدون نظر
این فایل در ۱۸اسلاید قابل ویرایش تهیه شده وشامل موارد زیر است:

تحلیل یک مجموعه آموزشی که مجموعه‌ای از تاپل‌های پایگاه است و مشخص کردن برچسب کلاس‌های مربوط به این تاپل‌ها . 
یک تاپل X با یک بردار صفت X= (x1,x2,…,xn) نمایش داده می‌شود . فرض می شود که هر تاپل به یک کلاس از پیش تعریف شده متعلق است . 
هرکلاس با یک صفت که به آن صفت برچسب کلاس می‌گوییم مشخص می‌شود .
مجموعه آموزشی به صورت تصادفی از پایگاه انتخاب می شود . 
به این مرحله، مرحله یادگیری نیز می گویند . 
استفاده از مدل: 
از طریق یک تابع y=f (X) برچسب کلاس هر تاپل X از پایگاه را پیش بینی می شود . 
این تابع به صورت قواعد کلاسه‌بندی، درخت‌های تصمیم گیری یا فرمول‌های ریاضی است .
 فرايندی دو مرحله ای است :
ساخت مدل : 
تحليل يک مجموعه آموزشی که مجموعه‌ای از تاپل‌های پايگاه است و مشخص کردن برچسب کلاس‌های مربوط به اين تاپل‌ها .
 يک تاپل X با يک بردار صفت X=(x1,x2,…,xn) نمايش داده می‌شود . فرض می شود که هر تاپل به يک کلاس از پيش تعريف شده متعلق است .
هرکلاس با يک صفت که به آن صفت برچسب کلاس می‌گوييم مشخص می‌شود .
 مجموعه آموزشی به صورت تصادفی از پايگاه انتخاب می شود . 
به اين مرحله ، مرحله يادگيری نيز می گويند .
استفاده از مدل :
از طريق يک تابع y=f(X) برچسب  کلاس هر تاپل X از پايگاه را پيش بينی می شود . 
اين تابع به صورت قواعد کلاسه‌بندی ، درخت‌های تصميم گيری يا فرمول‌های رياضی است . 
يکی از روش های کارآمد و با کاربرد گسترده کلاسه بندی است .
مدل حاصل از اين روش به صورت درختهای تصميم گيری است :
هر گره در اين درخت نشان دهنده يک آزمون بر روی يک صفت است .
هر شاخه خارج شونده از يک گره نشان دهنده خروجی های ممکن آزمون است .
هر برگ نشان دهنده يک برچسب کلاس است .
نحوه استفاده از درخت تصميم گيری :
اگر تاپلی چون X که برچسب کلاس آن نامشخص است داشته باشيم صفات اين تاپل در درخت مورد آزمون قرار می گيرند و يک مسير از ريشه به سمت يک برگ که برچسب يک کلاس را دارد ايجاد می شود .
الگوريتم پايه 
درخت به صورت بالا-پايين بازگشتی ساخته می شود .
در آغاز تمام مجموعه آموزشی در ريشه قرار دارند .
فرض می کنيم صفات مقادير گسسته دارند .
صفات به صورت بازگشتی بر حسب صفات انتخاب شده بخش بندی می شوند .
صفات آزمون بر اساس يک روال هيوريستيک مانند بهره اطلاعاتی ، شاخص جينی يا نسبت بهره انتخاب می شوند .
شرايط توقف الگوريتم 
تمام نمونه های مربوط به يک نود متعلق به يک کلاس باشند .
صفتی برای بخش بندی بيشتر باقی نمانده باشد .
نمونه ای باقی نمانده باشد .

عتیقه زیرخاکی گنج