• بازدید : 45 views
  • بدون نظر
این فایل در ۲۳صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

تغییر سیستم‌های مکانیکی و برقی به سیستم‌های الکترونیکی روز به روز در حال افرایش است. در بیشتر تکنولوژی‌های عمده، سیستم‌های الکترونیکی جایگزین بخش‌های مکانیکی شده و از آن پیش افتاده‌اند .امروزه چاپ الکترونیکی شده است. تلویزیون، کامپیوتر و بسیاری از ابزارهای دیگر نیز که در زندگی روزمره از آن استفاده می‌کنیم همین گونه‌اند. سیستم‌های الکترونیکی مسلماً بر تکنولوژی فکری متکی هستند زیرا محاسبات ریاضی و نوشتن نرم‌افزار و برنامه‌ها کارکرد آنها را ممکن می‌گرداند. 
یکی از برجسته‌ترین تغییرات، کوچک شدن وسایلی است که هادی برق هستند یا تکانه‌های برقی را منتقل می‌کنند. اختراع ترانزیستور تغییری شگرف را به دنبال داشت
ترموستات طراحي شده قابليت برنامه ريزي در رنج هاي دمايي بين C°‌۰ تا C°۱۵۰ را دارد و مي توان از آن براي تعديل دمايي محيط استفاده نمود براي راه اندازي آن به ولتاژي بين ۶ تا ۹ ولت نياز است يك رنج دمايي خاصC° ۳۲  C°(۲۵۰ به عنوان پيش فرض در برنامه اين ترموستات در نظر گرفته شده است كه در ابتداي راه اندازي و همچنين به هنگام بروز خطا، خود به خود اين رنج عملياتي پيش فرض فعال مي‌شود باتوجه۸ به شكل صفحه بعد مشاهده مي شود كه يك صفحه نمايش ،چهار كليد و سه LED در نظر گرفته شده است كه كاربر مي تواند با استفاده از اين كليد ها رنج هاي دمايي مورد نظر را انتخاب نمايد و LED ها براي نشان دادن وضعيت دما و همچنين خطاهاي احتمالي در حين كار با ترموستات تعبيه شده است.
وقتي ترموستات فعال مي شود رنج دمايي پيش فرض بر روي صفحه نمايش نشان داده مي شود و كاربر مي تواند با استفاده ار كليد START آن را فعال نموده و يا با استفاده از كليد DOWN, UP,CHANGE آن را تغيير دهد تغييرات مورد نظر براي رنج هاي دمايي را درحين كار ترموستات نيز با زدن كليد change مي توان اعمال نمود  بازدن كليد change رنج دمايي ابتدا به صورت خودكار بر روي MAX رفته و كاربر مي تواند با استفاده اركليد up آن را زياد و توسط كليد down آن را كم نمايد البته توجه داشته باشيد كه رنج دمايي كمتر از c °۰ را نمي توان به آن اعمال نمود و پس از تنظيم max و زدن كليد start مي توان رنج min را انتخاب نمود. حال با زدن كليد start صفحه نمايش رنج دمايي مورد نظر شما را نمايش داده وشما مي توانيد آن را فعال نماييد پس از فعال شدن رنج مورد نظر اگر دماي محيط بين رنج min و max باشد LED زرد به منزله متعادل بودن دما روشن مي شود چنانچه دماي محيط بين minو max باشد . LED  قرمز به منزله نا متعادل بودن دما روشن مي شود و اگر دماي محيط از min كمتر شود LED سبز به منزله نامتعادل بودن دما روشن مي شود با اتصال اين ترموستات به وسايل جانبي مانند بخاري و كولر در محيط مي توان دمارا در شرايط متعادل نگهداري نمود.
نمايش خطاهاي احتمالي به هنگام انتخاب رنج هاي خاص:
– چنانچه در رنج دمايي انتخاب شده minو max برابر باشند، هر سه LED به صورت چشمك زن فعال شده و ترموستات به صورت خودكار رنج پيش فرض را انتخاب مي نمايد.
– چنانچه ‌min بيشتر از max انتخاب شود هر سه LED به صورت چشمك زن فعال شده و ترموستات به صورت خودكار، رنج پيش فرض را انتخاب مي نمايد.
از مشكلات اين ترموستات وجود نداشتن اشميت تر مگير نرم افزاري در برنامه آن است. 

مبدل آنالوگ به ديجيتال(ANALOG TO DIGITAL COVERTOR)
متداول ترين انواع ADC ها به قرار زير است:
۱- مبدل ADC نوع شمارشي (COUNTING ANALOG TO DIGITAL CONVERTOR)  
۲- مبدل ADC نوع تقريبهاي متوالي (SUCCESSIVE – APROXIMATION CONVERTOR)
۳- مبدل ADC با مقايسه موازي(PARALLEI-CIMPARATOR ADC) 
۴- مبدل ADC دو شيبه (DUAL- SLOP OR RATIOMETRIC ADC)

مبدل نوع SUCCESSIVE- APPROXIMATION 
مبدل آنالوگ به ديجيتال داخلي ميكروهاي AVR كه ADC دارند از اين نوع است به همين دليل قصد داريم در مورد اين نوع ADC مختصري توضيح دهيم.
بجاي شمارنده در اين طرح از يك ميكروكنترلر يا ميكروپروسسور استفاده مي شود.
با برنامه اي MSB يك شده و در يك DAC بزرگتر باشد MSB صفر شده و MSB بعدي ۱ مي شود و مقايسه مي شود واگر كوچكتر باشد MSB 1 باقي مانده و MSB بعدي ۱ مي شود واين عمل به همين ترتيب ادامه پيدا مي كند تا سيگنال آنالوگ خروجي DAC با سيگنال آنالوگ حاضر در پايه ADC برابر شود.

مبدل آنالوگ به ديجيتال داخلي ميكرو
خصوصيات مبدل آنالوگ به ديجيتال داخلي AVR به شرح زير است :
* وضوح ۱۰بيتي 
* صحت مطلق ۲LSB  
* زمان تبديل    65-260(CONWERSION TIME)
* وضوح ۱۵KSPS در بالاترين حد
* كانالهاي مولتي پلكس شده
* مدهاي تبديل SINGLE .FREE 
* ولتاژ ورودي از ۰V تا VCC 
* پرچم وقفه پايان تبديل ADC 
* حذف كننده نويز(NOISE CACELER) 
ADC بسته به ميكرو به چند كانال آنالوگ مالتي يلكس شده كه به هر يك از پايههاي پورت اجازه مي دهد كه به عنوان يك ورودي مبدل آنالوگ به ديجيتال عمل نمايد. مبدل داخلي ميكرو داراي وضوح ۱۰ بيتي است و براي تبديل با اين وضوح،نياز به فركانس كلاكي بين ۵۰KHZ بين ۲۰۰KHZ دارد و اين كلاك را از تقسيم فركانس كريستال تامين مي كند. در صورت كه نياز به وضوح بالا ( كمتر از ۱۰ بيت ) نيست مي توان كلاكي بالاتر از ۲۰۰KHZ به آن اعمال كرد. ADC داراي يك SAMPLE AND HOLD است كه باعث مي شود ولتاژ ونرودي ADC در زمان تبديل در سطح ثابت نگه داشته شود تا عمليات تبديل با دقت بيشتري انجام شود.
ADCداراي دومنبع ولتاژ آنالوگ مجزا است.AVCC و AGND كه  AGVD بايستي به زمين يا ولتاژ زمين آنالوگ متصل شود و AVCC نبايد بيشتر از ۰٫۳V   نسبت به VCC اختلاف داشته باشد ولتاژ مرجع (VOLTAGE REFERENCE) خارجي در صورت وجود بايد به پايه AREF وصل شود كه اين ولتاژ بايستي بين ولتاژ موجود بر روي پايه هاي AGND-AVCC باشد در غير اين صورت به VCC وصل مي شود ADC مقدار آنالوگ ورودي را باتقريب متوالي به مقدار ديجيتال ۱۰ بيتي تبديل مي كند. كمترين مقدار نشان دهنده مقدار آنالوگ موجود در پايه AGVD و بالاترين مقدار، نشان دهنده ولتاژ پايه AREF منهاي يك LSB است.
به طور مثال اگر پايه به ولتاژ AREF=3.5V و AGND=0V وصل شده باشد مقدار ديجيتال شده ۱۰۲۳ نشان دهنده ولتاژ ۳٫۵V و مقدار ۰نشان دهنده ولتاژ ۰٫۰V بر روي پايه مبدل ADC انتخاب شده است.ADC داراي دو مد تبديل SINGLE و FREE است مد SINGLE بايستي توسط كاربر پيكره بندي وكانال دلخواه براي نمونه برداري انتخاب شود درمد FREE و ADC بايك ثابت نمونه برداري رجيستر داده ADCرا UPDATEمي كند.
  • بازدید : 56 views
  • بدون نظر
این فایل قابل ویرایش تهیه شده وشامل موارد زیر است:

امروزه  با پيشرفت در زمينه ساخت قطعات قابل برنامه ريزي در روشهاي طراحي  سخت افزار تكنولوژي V LSIجايگزين SSI شده است.رشد سريع الكترونيك سبب شده است تا امكان طراحي با مدارهاي مجتمعي فراهم شود كه درآنها استفاده از قابليت مدار مجتمع با تراكم بالا و كاربرد خاص نسبت به ساير كاربردهاي ان اهميت بيشتري دارد. از اينرواخيرا مدارهاي مجتمع با كاربرد خاص(  Integrated Circuit (Application  Specific به عنوان راه حل مناسبي مورد توجه قرار گرفته است(ASIC) وروشهاي متنوعي در توليداين تراشه ها پديدآمده است.در يك جمع بندي كلي مزاياي طراحي به روش A SIC عبارت است از :
كاهش ابعاد و حجم سيستم
كاهش هزينه و افزايش قابليت اطمينان سيستم كه اين امر ناشي ازآن است كه بخش بزرگي از يك طرح به داخل تراشه منتقل ميشود وسبب كاهش زمان ، هزينه مونتاژ راه اندازي ونگهداري طرح مي شود و در نتيجه قابليت اطمينان بالا ميرود.
اولين تراشه قابل برنامه ريزي كه به بازار عرضه شد ، حافظه هاي فقط خواندني برنامه پذير PROM)) بود كه خطوط آدرس به عنوان ورودي وخطوط داده به عنوان خروجي اين تراشه ها تلقي مي شد. PROM شامل  دسته اي از گيتهاي  AND ثابت شده(غير قابل برنامه ريزي ) كه به صورت رمز گشا بسته شده اند و نيز يك ارايه O R قابل برنامه ريزي  است.
از آنجايي كه PROM داراي قابليت هاي لازم براي پياده سازي مدارهاي منطقي نمي باشد، از اين تراشه ها بيشتر به عنوان حافظه هاي قابل برنامه ريزي استفاده مي شود.
اين قطعات داراي دو آرايه قابل برنامه  ريزي AND,OR هستند .در سال ۱۹۲۰ Philips, ساختار PLA  را به بازار عرضه كرد كه دواشكال ان  هزينه گران ساخت ان وسرعت كم آن بود.
شركت Memories   Monolitic  براي پوشش دادن اشكالات PLA ساختار آرايه قابل  برنامه ريزي منطقي PAL را به بازار عرضه كرد. PAL شامل  يك آرايه AND قابل برنامه ريزي و يك OR تثبيت شده است.
PALهاي استاندارد،آرايشهاي متفاوتي دارند كه هر يك از آنها توسط عددي يكتا مشخص مي شوند.اين عدد هميشه  با پيشوند PAL  شروع مي- شود .دو رقم بعدازPAL , تعداد وروديها را نشان مي دهد كه شامل خروجيهايي است كه به صورت ورودي به كار روند.حرف بعد از تعداد وروديها نوع خروجي را نشان مي دهد:
L  يعني فعال پايين,  H  يعني فعال بالا و  P يعني قابل برنامه ريزي .
يك يا دو عد د بعدي كه بعد از نوع خروجي قرار مي گيرد،تعداد خروجيهاست. به عنوان مثال PAL10L8  داراي ۱۰ ورودي و۸ خروجي فعال پايين است.
علاوه بر اين شماره  PALمي تواند  پسوند هايي براي تعيين سرعت ،نوع بسته بندي و حوزه حرارتي داشته باشد.
بعد از PAL، يكي از تراشه هاي منطقي قابل برنامه ريزي PLD(Programable Logic Device) كه در بسياري از كاربرد ها،جايگزين مدارهاي MSI,LSI  با عنوان  آرايه عمومي منطقي GAL)) به بازار عرضه شد.
GAL(Generic Array Logic) شامل آرايه اي قابل برنامه ريزي از گيت هاي AND است كه به گيتهاي  OR متصل شده است.
درGAL به جاي فيوزاز سلولهايي از نوع CMOS كه قابل پاك شدن  به صورت الكتريكي هستند (E2CMOS) هستند استفاده شده است.
GAL آرايشهاي متنوعي  دارد  كه هر يك توسط  شماره  يكتايي مشخص مي شود.اين شماره ،همواره با پيشوند GAL آغاز ميشود دو رقم اوليه كه بعد از پيشوند GAL مي آيد تعداد وروديها را نشان مي دهند كه  خروجيها يي كه ميتوانند به عنوان ورودي نيز به كار روند را در بر دارد.حرف V كه بعد از وروديها مي ايد،خروجي متغير و يك يا دو رقم بعد از آن، تعداد خروجيها را نشان مي دهد.
به عنوان مثال GAL1 6V 8 داراي ۱۶ ورودي و ۸ خروجي متغير است.
به همراه تراشه هاي قابل برنامه ريزي ASIC قابل ماسك MPGA(Masked Programmable Gate Array) نيز شروع به رشد كرد كه به صورت ارايه أي  از ترانزيستور هاي پيش ساخته هستند و براي پياده سازي مدارهاي منطقي ، در كارخانه هاي سازنده به يكديگر متصل مي شوند.ظرفيت آنها طي ده سال ، از  حدود هزار گيت به مرز چند ده هزار گيت رسيد.
پيشرفت در ابزار هاي طراحي  و نيز تراشه هاي قابل برنا مه ريزي منجر به عرضه FPGA شد.
امروزه FPGA ها از نظر تكنولوژي در زمره بزرگترين مدارهاي مجتمع موجود در بازار هستند.مثلا محصولات Altera  از سري FLEX10K با تكنولوژي نيم ميكرون ، حدود ده ميليون ترانزيستور را در گستره أي به ابعاد  1.8cmدر ۱٫۵ cmجاي داده اند.
گر چه اين محصولات  ظرفيتي  بيش از ۳۰۰۰۰۰ گيت و۳۰۰ پايه I/ /O  را به كاربر عرضه مي كند ولي با اين همه هنوز از تراشه هايي چون ۱ ۶V8  و نيز سري   74LS00استفاده فراواني به عمل مي ايد. با وجود اينكه مي توان ۷۰۰۰ نوع از تراشه  اخير در يك FPGA معمولي جاي داد.
بيشتر FPGA ها ي مورد استفاده ظرفيتي حدود ۸۰۰۰ گيت دارند .از       هاي بزرگتر براي ساخت نمونه هاي اوليه  به منظور پياده سازي نهايي  با MPGA ها استفاده مي گردد .
اين امكان نتيجه پيشرفت در نرم افزار هاي طراحي است كه ميتوانند مستقل از تراشه نهايي طراحي را انجام دهند و در نهايت طراح مي تواند تصميم بگيرد كه طرح با FPGA يا MPGA پياده سازي گردد .
به نظر مي رسد كه در آينده ، ايدهFPGA  همچنان قوام بيشتري به خود گرفته و با ايجاد ابزارهاي طراحي قويتر كه دستورات پيشرفته تري از VHDL(Very Hardware Description Languages) و AHDL  (Altera Hardware  Description  Languages) را پشتيباني مي كنند، راه براي  به كار گيري هر چه بيشتر  اين گونه تراشه ها هموار گردد.طليعه اين گونه پيشرفت ها را مي توان درتراشه ها ي بسيار پيشرفته (FIPSOC (Fild ed  Programmable System On Chip مشاهده كرد.
ساختار كلي F  PGA :
FPGAما نند  MPGAتشكيل شده است از يك سري عناصر منطقي كه براي كار خاصي محدود شده اند و نيز مانند PAL داراي اتصالات قابل برنامه ريزي است. بنابر اين هر دو جزء اصلي تشكيل دهنده يك مدار يعني بلوكهاي منطقي و همچنين اتصالات بين آنها، قابل برنامه ريزي است.شكل زير ساختار اصلي يك F  PGA را نشان ميدهد.
همانطور كه در شكل مشخص است  سه جزء اصلي آن عبارتند از بلوكهاي منطقي ، عناصري كه براي اتصالات به كار مي روند وبلوكهاي ورودي ـ خروجي.
ساختار و محتويات بلوكهاي منطقي ميتواند خيلي ساده (در حد گيت NAND) و يا خيلي پيچيده(نظير چند  MUXياLook-UpTable  به همراه يك فليپ فلاپ) باشد.
بلوكهاي منطقي در حقيقت جايي هستند كه قسمتهاي اصلي مدار قرار مي گيرند . البته ابتدا بايد مداري كه قرار است روي F PGA قرار بگيرد به اجزاي يكساني كه همان محتويات بلوكهاي منطقي هستند تقسيم شود و بعد از اين عمل است كه مي توان با بلوكهاي پايه به هم مدار واقعي را به دست اورد.
عناصري كه براي اتصالات به كار مي روند ، همانطور كه در شكل مشخص است،معمولا بين بلوكهاي منطقي قرار مي گيرند واز قطعات فلزي كه مي توانند به هم يا به بلوك هاي منطقي متصل شوند تشكيل شده اند. براي متصل كردن اين قطعات از سوئيچهاي قابل برنامه ريزي استفاده  مي شود. اين قطعات مي توانند طولهاي متفاوتي داشته باشند.
بلوكهاي ورودي – خروجي براي اينكه پين ها ي FPGA را بتوان در مد هاي مختلف ۳/۳ يا ۵ ولت و..برنامه ريزي كرد به كار مي روند. طراحي بلوكهاي منطقي و عناصر اتصالي مهمترين قسمت طراحي يك F PGA مي باشد.زيرا طراحي اين دو با هم بايد به گونه أي باشد كه پياده سازي مدارات منطقي مختلف را روي F PGA ممكن سازد.معمولا بين پيچيدگي و انعطاف پذيري هر دوي بلوكهاي منطقي و منابع اتصالي يك نسبت معكوس وجود دارد .يعني با زياد شدن يكي  ديگري كم مي شود و بر عكس.در ضمن، معماري يك بلوك منطقي و همچنين منابع اتصالي بر كل مساحت تراشه و سرعت تراشه اثر دارد.

مقايسه FPGA با MPGA:
پيشرفت  تكنولوژي CMOS همواره باعث ايجاد مدارهاي مجتمع پيچيده تر و پيشرفته تر شده است .به گونه أي كه روز به روز بر بهبود وضعيت F PGA  ها در برابر MPGA ها افزوده مي شود. قبل از هر چيز توجه به اين نكته ضروري است كه به طور كلي نام اختصاري FPGA هم به FPGA هاو هم به CPLD ها اتلاق مي گردد.
تا پيش از اين تنها از MPGA ها براي توليد سريع نمونه هاي اوليه در طرح هاي ASIC استفاده ميشد اما به موازات پيشرفت در تكنولوژي C MOS و امكان جاي دادن مدارهاي بسيار پيچيده بر روي يك تراشه , را براي جايگزين شدن F PGA ها به جاي MPGA  ها در كاربردهايي همچون سيستمهاي كنترل صنعتي و مخابرات , هموار شد.
پس از اينكه ظرفيت FPGA به چند هزار گيت رسيد,صحبت از جايگزيني F PGA ها جنبه عملي تر يافت .به علت تنوع  تكنولوژي هاي به كار رفته در ساخت FPGA و نيز وجود ابزار هاي مختلف و پيشرفته  حامي هر يك از انها يك تكنولوژي به خصوص از FPGA ها را نمي توان به ساد گي انتخاب  كرد.
گر چه هم اكنون فركانس كار براي  F PGA ها نوعا حدود ۱۲۰MHZ  تا۸۰۰MHZ مي باشد ,اما محدوده واقعي كاملا به نوع طرح پياده شده بستگي داشته و همچنين بسته به نوع مكان يابي و مسير يابي ابزارهاي طراحي مي باشد.
FPGA ها معمولا به اندازه كافي پينI/O فراهم ميكنند به طوريكه FPGA هايي با بيش از ۳۰۰ پين نيز در دسترس مي باشند .در طرح هايي كه براي پياده سازي به چند FPGA نياز مي باشد ,از كل اين پايه ها استفاده مي شود.به خصوص اگر در در طرح,باس هاي ادرس و داده نيز وجود داشته باشد.
FPGA در مقايسه با MPGA داراي دو مزيت عمده مي باشد :
هزينه پايين براي توليد كم : اماده سازي MPGA نياز به استفاده از خط توليد كارخانه دارد  ودر نتيجه براي توليد كم مقرون به صرفه نيست.
سر عت بالاي اماده سازي :به دليل بالا بودن مدت زمان اماده سازي در كار خانه و همچنين صرف زمان براي رفع عيبهاي احتمالي ,اماده شدن چيپ M PGA خيلي طولا نيتر از FPGA  است كه به راحتي ظرف چند دقيقه در محل كار  برنامه ريزي ميشود.
در عوض سه عيب عمده اي كه   FPGA ها نسبت به MPGA ها دارند عبارتند از :
سرعت كم ( تا حد سه برابر ):به دليل تاخير زياد سوئيچهاي برنامه پذير در مسيرهاي اتصالات .(زيرا ظرفيت خازني و مقاومتي بالايي دارند.)
چگالي پايين تر منطقي :به دليل  سطح اشغال شده توسط سوئيچهايومداراتي كه براي برنامه پذير كردن چيپ استفاده مي شوند.
قيمت بالا براي توليدات با تعداد زياد .
مراحل پياده سازي يك طرح بر روي F PGA:
اصولا روش طرا حي مدارات منطقي مستقل از تراشه نهايي است كه براي پياده سازي انتخاب مي گردد .معمولا در اين گونه طراحي ها ,يك كتابخانه از بلوكهاي  پيش  ساخته در اختيار طراح قرار دارد كه اعضاي كتابخانه از قبل طراحي شده اند.البته در اين كتابخانه بر خلاف Data Bookها به pin-out نيازي نمي باشد.اعضاي پيچيده تر نظير شمارنده ها و يا ساختار هايي شبيه تراشه هاي استانداردT T L وCMOS را ماكرو مي نامند .هر ماكرو معمولا يك يا چند سلول از تراشه ها را اشغال مي كند كه با سيم بندي مناسب تابع مورد نظر را ايجاد مي كند .در پروسه طراحي مهمترين بخش را مرحله شبيه سازي تشكيل مي دهد. از انجا كه طرح به صورت بخش بخش مي باشد كليه اين بخش ها را مي توان جداگانه و با اعمال ورودي و دريافت هاي  خروجي هاي مورد نظر تست كرده و در نهايت كل طرح را به طور يك جا تست نمود .
بر خلاف تراشه هاي استاندارد,در ماكرو ها مي توان تنها بخشهاي مورد استفاده در طرح را استفاده كردو بقيه ماكرو را بدون هدر دادن هيچ بخشي از سلول قابل برنامه ريزي ,از طرح زدود.اما با  اين همه  اين مشكل به گونه أي د يگر مي تواند ظهور كند.از انجا كه هر تراشه با تعداد ثابتي سلول ساخته مي شود. بنا براين پياده سازي طرح با اولين تراشه اي صورت مي گيرد كه بتواند تعداد سلولهاي مورد نياز براي طرح را بر اورده كند.از اين رو در صورتي كه كوچكترين تراشه داراي ۱۰۰۰ سلول و تراشه بعدي داراي ۱۵۰۰ سلول باشد براي طرحي كه نياز به ۱۰۱۰ سلول دارد, ۳۰% از تراشه اخير بدون استفاده رها خواهد شد .  شكل صفحه بعد فلو چارت مراحلي را كه براي پياده سازي يك طرح بر روي F PGA بايد طي شود نشان مي دهد.
ورودي  سيستم
در يك نرم افزار طراحي  مدار را به روشهاي مختلف مي توا ن وارد نمود .و از جمله اين روشها ويرايشگر هاي شماتيكي مدار , زبانهاي ساده توصيف سخت افزار ( AHDLوDBEL و…) ويرايشگر هاي موج(كه شكل موج ورودي /خروجي را به عنوان ورودي به سيستم قبول مي كنند) و زبانهاي توصيف سخت افزار در سطوح مختلف(مانند  VHDLوVerilog) مي باشند.

عتیقه زیرخاکی گنج