• بازدید : 46 views
  • بدون نظر

معادله در رياضيات وقتي با اسم خاص و صورت خاص مي آيد خود به تنهايي مسأله اي را نمايش مي دهد كه در آن مي خواهيم مجهولي را بدست آوريم.

   كاربرد معادله ديفرانسيل از نظر تاريخي با معرفي مفهوم هاي مشتق و انتگرال آغاز گرديد. ساده ترين نوع معادله ديفرانسيل آن دسته از معادلاتي هستند كه مشتق تابع جواب را داشته باشيم. كه چنين محاسبه اي به پاد مشق گيري و انتگرال گيري نامعين موسوم است.

   معادلات ديفرانسيل وابستگي بين توابع و مشتق هاي توابع را نشان مي دهد. كه از لحاظ تاريخي به طور طبيعي از زمان كشف مشتق به وسيله نيوتن ولايب نيتس آغاز مي شود. (قرن هفدهم ميلادي). كه با رشد سريع علم و صنعت در قرن بيستم روشهاي عددي حل معادلات ديفرانسيل مورد توجه قرار گرفتند كه توسعه و پيشرفت كامپيوتر ها در پايان قرن بيستم موجب كاربرد روش هاي تقريبي تعيين جواب معادلات ديفرانسيل در بسياري از زمينه هاي كاربردي گرديد كه باعث بوجود آمدن مباحث جديد در اين زمينه شد.

دانلودفایل پایا ن نامه كارشناسي /حل عددي معادلات ديفرانسيل

  • بازدید : 43 views
  • بدون نظر
این فایل در قالبpdfتهیه شده وشامل موارد زیر است:

معادله دیفرانسیل یکی از معادله های ریاضی است و بیانگر یک تابع مجهول از یک یا چند متغیر مستقل و مشتقهای مرتبه‌های مختلف آن نسبت به متغیرهای مستقل است. بسیاری از قوانین عمومی طبیعت (در فیزیک، شیمی، زیست‌شناسی و ستاره‌شناسی) طبیعی‌ترین بیان ریاضی خود را در زبان معادلات دیفرانسیل می‌یابند. کاربردهای معادلات دیفرانسیل همچنین در ریاضیات، بویژه در هندسه و نیز در مهندسی و بسیاری از حوزه های دیگر کاربردی و فنی فراوان‌اند.

معادلات دیفرانسیل در بسیاری پدیده‌های علوم رخ می دهند. هر زمان که یک رابطه بین چند متغیر با مقادیر مختلف در حالت‌ها یا زمان‌های مختلف وجود دارد و نرخ تغییرات متغیرها در زمان‌های مختلف یا حالات مختلف شناخته شده است میتوان آن پدیده را با معادلات دیفرانسیل بیان کرد.
متدهای حل معادلات دیفرانسیل بسیار مرتبط با نوع معادله هستند. معادلات دیفرانسیل را به طور کلی به دو دسته می توان تقسیم کرد.
معادلات دیفرانسیل معمولی: در این نوع معادلات تابع جواب دارای تنها یک متغیر مستقل است.
معادلات دیفرانسیل با مشتقات پاره‌ای: در این نوع معادلات تابع جواب دارای چندین متغیر مستقل می‌باشد.
هر دو نوع این معادلات را می توان از دیدگاه خطی یا غیر خطی بودن تابع جواب هم دسته بندی کرد. همچنین مرتبه معادلات دیفرانسیل معمولی و مشتقات پاره ای را می توان به صورت کسری در نظر گرفت که به معادلات دیفرانسیل کسری مشهورند. این نوع از معادلات دیفرانسیل نیز روش های حل گوناگونی دارند که می توان به روش تجزیه آدومیان، هوموتوپی و تکرار تغییرات اشاره نمود.
به طور کل معادلات دیفرانسیل به سه روش تحلیلی ، نیمه تحلیلی و عددی حل میشوند . برخی از معادلات دارای جواب دقیق و فرم تابعی هستند اینگونه معادلات را میتوان از روشهای تحلیلی حل نمود و به جواب دقیق رسید . معادلات دیگر که دارای فرم تابع مشخص نیستند را بایستی توسط روش های نیمه تحلیلی و یا عددی حل کرد . از روش های نیمه تحلیلی میتوان به روش تجزیه آدومیان ، آنالیز هموتوپی ، تبدیل دیفرانسیل و… اشاره کرد . روش های عددی دامنه وسیع تری را برای حل معادلات به کار میگیرد از روشهای عددی میتوان به روش اویلر، روش هون ، روش تیلور ، روش رانگ-کوتا، آدامز-بشفورث-مولتون ، روش میلن سیمپسون ، روش هامینگ ، روش رانگ-کوتا فلبرگ مرتبه ۵، روش رحمانزاده کای وایت ، روش های طیفی و شبه طیفی ، روش های شبکه ای همانند المانهای متناهی و نقاط محدود و روش های بدون شبکه اشاره کرد .


عتیقه زیرخاکی گنج