• بازدید : 31 views
  • بدون نظر
این فایل در ۱۶صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

توانايي توليد پايدار توده زنده يكي از مواردي است كه از اهميت فزايندهاي برخوردار است، در صورتيكه روشهاي مديريت از كارايي لازم برخوردارنباشد، توليد توده زنده به فرسودگي و انهدام خاك مي انجامد. مساله ديگر در رابطه با پايداري و مقدار مواد شيميايي بكار گرفته شده به منظور مهار حشرات، علفهاي هرز، عوامل بيماريزا و تامين مواد غذايي براي گياهان است. با بهره گيري از نظامهاي مديريت خوب محصولات زميني مناسب بر يك مبناي پايدار با حداقل تاثيرات زيانبار خواهند بود. 
پس از بحران نفتي دهه ۷۰ ميلادي، كشورهاي صنعتي تلاش مضاعفي نمودند تا انرژيهاي تجديد پذير نظير انرژي خورشيدي، بيوماس و … بتدريج جايگزين انرژي فسيلي شود. زيرا بعلت داشتن مزاياي ويژه مانند فراواني، فناناپذيري و عدم وابستگي، هميشه در دسترس بوده . بنابراين كشورهاي صنعتي با برنامه ريزي مدون بعمل آمده در اين خصوص، تلاش مي كنند تا حد ممكن از وابستگي به انواع انرژي هاي تجديد ناپذير بتدريج بكاهند. آنچه حايز اهميت است دستاوردها و موفقيتهاي سالهاي اينده كشورهاي صنعتي مي باشد زيرا تحقيقات وسيع و جامعي توسط دانشمندان و متخصصان در دست اقدام مي باشد (منابعي كه حد مشخصي دارند مثل نفت و … منابع غير قابل تجديد يا ذخيره اي است و بالاخره زماني تمام مي شود. از سوي ديگر منابع قابل احيا به منابع تجديد شونده يا جاري موسومند. توده زنده مثالي از منابع تجديد شونده است زيرا فرايند فتوسنتز همه ساله كه توده زنده بيشتري توليد مي كند. 
کشورها درپي انرژي هاي تجديد پذير؛ در حال حاضر اغلب ممالک جهان به نقش و اهميت منابع مختلف انرژي در تأمين نيازهاي حال و آينده پي برده و سرمايه گذاري ها و تحقيقات وسيعي را براي سياستگذاري، استراتژي و برنامه هاي زيربنايي و اصولي انجام مي دهند. 
هم اکنون تدوين استراتژي که شامل بررسي تمامي پارامترهاي تأثير گذار در انرژي و تعيين راهکارهاي مناسب براي کارا تر کردن انرژي و الگوي بهينه مصرف آن است، در رأس برنامه هاي زيربنايي بيشتر کشورهاي جهان قرار دارد، که در ميان حاملهاي مختلف انرژي،انرژي هسته اي جايگاه ويژه اي دارد.
انرژي هسته اي از عمده ترين مباحث علوم و تکنولوژي است و هم اکنون نقش عمده اي را در تأمين انرژي کشورهاي مختلف به خصوصْ کشورهاي پيشرفته دارد. 
اهميت انرژي و منابع مختلف تهيه آن، در حال حاضر جزء رويکردهاي اصلي دولتها قرار دارد. به عبارت بهتر، از مسائل مهم هر کشور براي توسعه اقتصادي و اجتماعي بررسي ، اصلاح و استفاده بهينه از منابع موجود انرژي در آن کشور است. 
مي توان گفت، امروزه بحرانهاي سياسي و اقتصادي، نگرانيهاي زيست محيطي، ازدياد جمعيت، رشد اقتصادي ، همگي مباحث جهان شمولي هستند که با گستردگي تمام، فکر انديشمندان را در يافتن راهکارهاي مناسب در حل معضلات انرژي در جهان به خود مشغول داشته اند. 
از سوي ديگر منابع تجديد ناپذير انرژي يا همان سوخت هاي فسيلي در مقادير محدود در دسترس اند. نفت،گاز و زغال سنگ نمونه هاي بارز اين منابع هستند که در برخي مقالات و به نام منابع “پايان پذير” معرفي شده اند.
نقش انرژي هسته اي در صنعت نفت؛
کارشناسان اقتصادي به خصوص آنهايي که در حوزه انرژي فعاليت مي کنند بر اين باورند جهان به سمت استفاده از انرژي هاي تجديد پذير و يا همان انرژي هاي پاک در حال حرکت است، بنابراين استفاده از انرژي هسته اي را که خود از گسترده ترين و به صرفه ترين انرژي هاي تجديد پذير به شمار مي رود، براي کشور هاي متکي به سوخت فسيلي تاکيد مي کنند. 
دکتر وکيلي يکي از اين کارشناسان، معتقد است، در حال حاضر استفاده از انرژي هسته اي بايد در راس برنامه هاي دولتها قرار گيرد، که در اين ميان بهتر است، جمهوري اسلامي ايران براي استفاده از اين انرژي پاک، سرمايه گذاري هاي بيشتري کند.
وي درباره استفاده از انرژي هسته اي گفت: برخلاف انرژي هاي فسيلي که براي توليد آنها نياز به مطالعات زلزله شناسي، لرزه نگاري، حفاري، اکتشاف، استخراج، انتقال و توزيع است، توليد انرژي هسته اي خيلي به صرفه تر انجام مي شود.
وکيلي همچنين درباره کاربرد انرژي هسته اي در صنعت نفت افزود: در صنعت نفت نيز مانند ساير صنايع، انرژي عامل محرکه شناخته مي شود به طوري که مي توان براي تمام مراحلي که در بالا گفته شد، به جاي سوخت فسيلي از سوخت هسته اي استفاده کرد.
مواردي از کاربرد انرژي هسته اي در صنعت نفت؛
علاوه بر مواردي که دکتر وکيلي درباره کاربرد انرژي هسته اي در صنعت نفت بيان کردند، در ذيل، چند مورد از اين کاربرد را برمي شماريم:
۱) با آزمايش ۴۰ نوع نفت مختلف که در نقاط مختلف جهان استخراج مي شوند دانشمندان به اين نتيجه رسيدند که در تمام مواد نفتي هفت نوع عنصر مشترک وجود دارد. اما مقدار آنها در نفتي که در يک نقطه استخراج مي شود با نفت نقطه ديگر دنيا متفاوت است، که با استفاده از انرژي هسته اي به راحتي مي توان اين تفاوت را تشخيص داد.
۲) هنگامي که مواد نفتي به جا مانده از کشتي حامل سوخت در جايي مشاهده مي شود، مي توان نمونه اي از آن را به آزمايشگاه برد و در معرض تابش نوتروني قرار داد به اين ترتيب عناصر مختلف و مقدار آنها مشخص مي شود، و مي توان به طور دقيق اعلام کرد که اين آلودگي از کدام کشتي نشات گرفته است.
۳)هنگام انتقال مواد نفتي در فاصله هاي زياد، چون شرکتهاي مختلف نفتي از لوله هاي نفت مشترک استفاده مي کنند، رديابي ايزوتوپي مختلف براي علامت گذاري ابتداي انتقال هر محموله نفتي، به کار برده مي شود.
۴) در تأسيسات تصفيه و پالايش از رديابي هاي ايزوتوپ هاي راديواکتيو براي دنبال کردن مواد پتروشيمي و آماده سازي آنها در قسمتهاي مختلف استفاده مي شود.
۵) در مرحله نهايي محصولات مواد نفتي تصفيه شده، براي تعيين درجه خالص بودن آنها، با استفاده از ايزوتوپهاي راديواکتيو آزمايش مي شوند.
۶)رديابي ايزوتوپ راديواکتيو را تقريباً در تمام مراحل تأسيسات صنعتي پتروشيمي مي توان مشاهده کرد. 
۷)هنگام کشف و استخراج نفت، دانشمندان ميله هاي راديواکتيو را داخل چاههاي آزمايشي فرو برده، سپس ميزان انتشار تشعشع راديواکتيو را در طبقات مختلف اندازه مي گيرند زمين شناسان ميزان بازتاب اشعه راديواکتيو را ثبت مي کنند و يک تصوير واضح و دقيق از طبقات زيرين جهت حفاري بيشتر براي رسيدن به نفت در آن منطقه يا متوقف کردن کار به دست مي آورند
انرزی وانواع آن
Friday, 02.15.2008, 08:01am (GMT3.5)
انرژي چيست ؟
در جهان هستی در مقابل دو پدیده شناخته شده قرار داریم: 

۱ـ مواد بیجانی كه فقط از اتم ها و ملكولها تشكیل شده اند و نظام حركتی الكترون ها به دور هسته بر آنها غالب و حاكم است.

 2ـ ذراتی كه علاوه بر داشتن نظام الكترونی ، خاصیت زایندگی ، تولید مثل و توسعه به انواع مختلف را دارد كه به آنها سلول می گوئیم .
حیات با پیچیدگی بسیار در سلولها جریان دارد . از ذره ای ناچیز، درختی تنومند با بار فراوان و یا حیوانی ستبرویا انسانی با كمال خلق می شود .

یك سلول ساده در زمانی كوتاه به سلولهای زیادی، آنهم نه ضرورتاً از نوع خودش بلكه به صور مختلف ، با نظم توسعه یافته و هر دسته از سلولها قسمتی از بدن حیوان و یا انسان را می سازند.

با آنكه راز خلقت مسئله ای غامض و پر رمز و راز است و تصور آن در ذهن كوچك بشر ( در مقایسه با عظمت طبیعت ) نمی گنجد ولی سالیان درازی است به این نكته آگاهیم كه اگر تزریق انرژی به این سلولها را قطع نماییم و یا از كسب انرژی آنها جلوگیری نماییم حیات متوقف میشود. پس سزاوار است كه انرژی را جوهرحیات بدانیم زیرا نه تنها قطع آن ، حیات را متوقف میكند بلكه سبب می شود كه اجسام غیر زنده نیز به حالت اولیه باقی مانده و فعل وانفعال در آنها متوقف گردد و كلیه خواص تبدیل ، از آنها زایل شود. چه با نگرش توحیدی و چه بادید مادیگری(نظریه تزوآنتی تز) به جهان نگاه كنیم ، بهر حال در یك اصل نمی توان شك كرد و آن عبارتست از:اثر قاطع و تعین كننده انرژی در حیات جهان فلذا این اکسیر حیات كه حاكمیت قطعی بر پیدایش عالم داشته وادامه حیات را میسر نموده است امروزه میرود كه مشكلات عظیمی در زندگی انسانها ایجاد نماید لذا با یستی رفع این مشكل طرف توجه نخست متفكرین جهان قرار گیرد.
انرژی نه تنها جوهر حیات است ، بلكه رشد حیات نیز یكی از صور انرژی است كه با ظرافت بسیار ، ارتباط حیات را برقرار میكند . مسئله امواج پخش شده از مغز بشر كه بنام اشعه های
 
نام گذاری شده ( این اشعه نباید با اشعه فركانس بسیار بالای فیزیك اشتباه شود)  و نقش الكتریسته در فرمان سلسه اعصاب و بالاخره اثر جاودان و حیاتی خورشید در رویش گیاهان ، حیات دریاها و زندگی بشر و تمام تحولات شیمیایی و فیزیكی كه از امواج و ذرات نورانی نظم جهان را حفظ می نماید نشان آنست كه در ظرافت ارتباطات پیجیده رشد و توسعه حیات انرژی هم موجد است و هم وسیله.

در بسیاری از متون به طور كلی انرژی را به صورت ساده «قابلیت یا ظرفیت انجام كار» تعریف نموده اند . این تعریف جامع و برگرفته ازمكانیك نیوتنی است بر مبنای خواص اجرام متحرك .

مفهوم انرژی ریشه اصلی علوم ترمودینامیك ، فیزیك ذره ای ، شیمی و الكترو مغناطیس است . رابطه جرم و انرژی انیشتین كه نشان دهنده رابطه بین این دو عامل است یعنی E=M.C2 را در نظر می گیریم .

E مقدار انرژی ، m جرم ماده وc سرعت نور می باشد و هم چنین رابطه پلانك كه مبنای تئوری كوانتوم است نشان دهنده تبدیل انرژی در رابطه با تابش است . در این رابطه E=h.v كوانتای انرژی تابعی است از فركانس تابش ، كه در این رابطه هم E مقدار انرژی ( مقدار كوانتای انرژی) و V فركانس تابش وh ضریبی است كه بنام ثابت پلانك خوانده میشود و مقدار آن برابر است با :

( بر حسب ارگ ـ ثانیه )                                                          10× ۶۲۵۵/۶=h
اگر این ضریب در فركانس یك فوتون ضرب شود مقدار انرژی ـ فوتون را نشان میدهد .

با وجود آنكه می توان انرژی را بطور مختصر تعریف كرد ولی این تعریف نیاز به تعریف كار و قدرت دارد . در قلمرو فیزیك كار فقط زمانی انجام می شود كه قدرتی بر جسمی اعمال شده و جسم در همان زمان در جهتی كه بردار نیرو میباشد شروع به حركت نماید . مقدار كار انجام شده از نقطه a به نقطه b ( تحرك جسم از a به b ) به صورت زیر است:
 
F مجموع نیرو اعمال شده و   زاویه بین جهت f و جهت جابجایی ذره (ds) است . در سیستم M.K.S كار به صورت نیوتن – متر ، ( ژول) و در سیستم انگلیسی با واحد فوت ـ پوند نشان داده میشود. قدرت به صورت عاملی تعریف میشود كه توسط آن كار صورت می گیرد . متوسط قدرت اعمال شده توسط یك عامل در مدت معلوم از زمان برابر است با حاصل جمع كارانجام شده توسط آن عامل در زمان مشخص تقسیم بر مدت زمان. در واقع 
 
و قدرت یا توان لحظه ای عبارت است از :
 
كه واحد ان وات ميباشد.
  • بازدید : 61 views
  • بدون نظر
این فایل در ۱۲صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

قبل از این گفتیم که گل به‌تنهایی و پس از خشک شدن ترک می‌خورد. کاه با خواص ارتجاعی خود این نقص گل را برطرف می‌کند، بنابراین، مقداری از آن را به گل می‌افزایند. اصلاً علت استفاده از کامپوزیت همین خواص است
to compose یعنی ترکیب کردن و بنابراین کامپوزیت (composite) یعنی مرکب. مرکب هم که می‌دانیم، یعنی چیزی که از ترکیب چند چیز مختلف به دست آمده است. موادّ کامپوزیتی به موادی گفته می‌شوند که از ترکیب چند نوع ماده به وجود آمده‌اند. وقتی می‌گوییم از ترکیب چند ماده، منظور این است که هرکدام از این موادّ ترکیب‌شده، قابلیت استفاده به صورت یک مادهٔ مستقل را دارند
کسی نمی‌داند اولین کامپوزیت کِی ساخته شد. شاید اولین کامپوزیتی که بشر با آن سروکار پیدا کرد، کاه‌گِل باشد. قدیم‌ها برای ساختن خانه از گل استفاده می‌کردند، اما چون گل بعد از خشک شدن ترک می‌خورد (وقتی آبِ گل تبخیر می‌شود، حجم آن کاهش پیدا می‌کند و چون گل خشک نمی‌تواند خودش را جمع کند ترک می‌خورد)، مقداری کاه به آن افزودند تا حفره‌ها را پُر کند و مانع از ترک خوردن گل شود. شاید هم اولین کامپوزیت را مصری‌ها ساخته باشند که در قایق‌هایشان به چوب بدنه مقداری پارچه می‌آمیختند تا در اثر خیس شدن چوب باد نکند. اما در هر حال، می‌شود گفت که مواد کامپوزیتی در سال‌های اخیر است، که به عنوان یک مادهٔ مهندسی پذیرفته شده‌اند. 
● چرا از کامپوزیت‌ها استفاده می‌کنیم؟ 
قبل از این گفتیم که گل به‌تنهایی و پس از خشک شدن ترک می‌خورد. کاه با خواص ارتجاعی خود این نقص گل را برطرف می‌کند، بنابراین، مقداری از آن را به گل می‌افزایند. اصلاً علت استفاده از کامپوزیت همین خواص است. یعنی ما برای اینکه خواص بدِ یک ماده را برطرف کنیم، مادهٔ دیگری را که مکمل خواص مادهٔ اولیه است به آن می‌افزاییم. 
● ترکیب کردن یعنی چه؟ 
انواع ترکیب‌ها عبارتند از: شیمیایی، مکانیکی، و فیزیکی. 
وقتی دو ماده با هم ترکیب شیمیایی می‌دهند که بین آن دو یک پیوند شیمیایی مثل کووالانسی، یونی، واندروالسی و… برقرار شده باشد. به موادی که این‌گونه با هم ترکیب می‌شوند محلول می‌گویند. بارزترین و ملموس‌ترین مثال برای محلول‌ها آلیاژها هستند. 
اما وقتی دو ماده با اعمال نیرو کنار هم قرار می‌گیرند، به صورت مکانیکی با هم ترکیب شده‌اند و واضح است با برداشتن این نیرو، این ترکیب از بین می‌رود. 
اما ترکیب در کامپوزیت‌ها جزء هیچ‌کدام از این دو حالت نیست، بلکه ترکیبی از نوع فیزیکی است. مثال مناسب برای این نوع ترکیب، ساندویچ است. وقتی یک یا چند ماده با مادهٔ دیگری محاصره شود، به طوری که نتواند از محاصرهٔ آن فرار کند، یک ترکیب فیزیکی به وجود می‌آید. برای درک بهتر این نوع ترکیب، کسی را تصور کنید که در یک باتلاق گیر افتاده است. 
● اجزای یک کامپوزیت 
گفتیم که کامپوزیت عبارت است از ترکیب فیزیکی دو ماده با خواص متفاوت. بنابراین، کامپوزیت‌ها از دو قسمت تشکیل شده‌اند: قسمت زمینه (مادهٔ اول که در یک سری از خواص نقص دارد) و قسمت تقویت‌کننده (مادهٔ دومی که به مادهٔ اول اضافه می‌شود تا دسته‌ای از خواص آن را بهبود بخشد). 
الف) کامپوزیت لایه‌ای 
ب) کامپوزیت رشته‌ای 
ج) کامپوزیت ذره‌ای 
● زمینه چیست؟ 
زمینهٔ یک مادهٔ مرکب، ماده‌ای است پیوسته که مادهٔ دوم را در برگرفته است. این ماده در کاه‌گِل، گِل و در مثال باتلاق و آدم، محیط باتلاق است که پیوسته است و آدم را در برگرفته است. دومین ملاک برای تعیین زمینه این است که مقدار ماده‌ای که به عنوان زمینه استفاده می‌شود بیشتر از قسمت تقویت‌کننده است. 
● وظیفهٔ زمینه چیست؟ 
اولین وظیفهٔ زمینه احاطهٔ مادهٔ‌ تقویت‌کننده است، به طوری که نگذارد مادهٔ تقویت‌کننده پراکنده شود؛ وظیفهٔ دوم، محافظت از مادهٔ تقویت‌کننده در برابر عوامل شیمیایی است؛ و وظیفهٔ سوم این است که چون مواد زمینه را نرم انتخاب می‌کنند، وقتی نیرو به مادهٔ مرکب (کامپوزیت) وارد می‌شود، توسط زمینه به مادهٔ تقویت‌کننده انتقال داده شود تا مادهٔ تقویت‌کننده نیرو را تحمل کند. 
● تقویت‌کننده چیست؟ 
تقویت‌کننده‌ها موادی هستند که به صورت تکه‌تکه، در یک زمینهٔ پیوسته وارد می‌شوند تا خواص مادهٔ زمینه را بهتر کنند. 
● تقویت‌کننده‌ها چه شکلی هستند؟ 
تقویت‌کننده‌ها می‌توانند به صورت یک صفحه، یک رشته ( نخ)، یا یک ذره (پودر) وارد حجم زمینه شوند و خواص آن را بهبود بخشند. 
الف) تقویت‌کنندهٔ صفحه‌ای 
ب) تقویت‌کنندهٔ رشته‌ای 
ج) تقویت‌کنندهٔ ذره‌ای 
● کامپوزیت‌ها چه کاربردهایی دارند؟ 
امروزه می‌توانیم ترکیبات کامپوزیتی را در زندگی روزانه و در اطراف خود ببینیم. چند مثال از این وسایل که در آنها ترکیبات کامپوزیتی به کار رفته است، اینها هستند: بدنهٔ هلی‌کوپتر، زه راکت تنیس، بدنهٔ هواپیما، کاه‌گِل، توپ‌های ورزشی و…

نانو کامپوزیت تحول بزرگ در مقیاس کوچک

کامپوزیت ترکیبی است از چند مادهٔ متمایز، به طوری که اجزای آن به‌آسانی قابل تشخیص از یکدیگر باشند. یکی از کامپوزیت‌های آشنا بتُن است که از دو جزء سیمان و ماسه ساخته می‌شود.
مواد و توسعهٔ آنها از پایه‌های تمدن به شمار می‌روند. به طوری که دوره‌های تاریخی را با مواد نامگذاری کرده‌اند: عصر سنگ، عصر برنز، عصر آهن، عصر فولاد، عصر سیلیکون و عصر کربن. ما اکنون در عصر کربن به سر می‌بریم. عصر جدید با شناخت یک مادهٔ جدید به وجود نمی‌آید، بلکه با بهینه کردن و ترکیب چند ماده می‌توان پا در عصر نوین گذاشت. دنیای نانومواد، فرصتی استثنایی برای انقلاب در مواد کامپوزیتی است. 
کامپوزیت ترکیبی است از چند مادهٔ متمایز، به طوری که اجزای آن به‌آسانی قابل تشخیص از یکدیگر باشند. یکی از کامپوزیت‌های آشنا بتُن است که از دو جزء سیمان و ماسه ساخته می‌شود. 
برای تغییر دادن و بهینه کردن خواص فیزیکی و شیمیایی مواد، آنها را کامپوز یا ترکیب می‌کنیم. به طور مثال، پُلی اتیلن{۱} که در ساخت چمن‌های مصنوعی از آن استفاده می‌شود، رنگ‌پذیر نیست و بنابراین، رنگ این چمن‌ها اغلب مات به نظر می‌رسد. برای رفع این عیب، به این پلیمر وینیل استات می‌افزایند تا خواص پلاستیکی، انعطافی‌ و رنگ‌پذیری آن اصلاح شوند. در واقع، هدف از ایجاد کامپوزیت، به دست آوردن ماده‌ای ترکیبی با خواص دلخواه است. 
نانوکامپوزیت، همان کامپوزیت در مقیاس نانومتر (۹-۱۰) است. نانوکامپوزیت‌ها در دو فاز تشکیل می‌شوند. در فاز اول ساختاری بلوری در ابعاد نانو ساخته می‌شود که زمینه یا ماتریس کامپوزیت به شمار می‌رود. این زمینه ممکن است از جنس پلیمر، فلز یا سرامیک باشد. در فاز دوم ذراتی در مقیاس نانو به عنوان تقویت‌کننده{۲} برای استحکام، مقاومت، هدایت الکتریکی و… به فاز اول یا ماتریس افزوده می‌شود. 
بسته به اینکه زمینهٔ نانوکامپوزیت از چه ماده‌ای تشکیل شده باشد، آن را به سه دستهٔ پُلیمری، فلزی و سرامیکی تقسیم می‌کنند. کامپوزیت‌های پلیمری به علت خواصی مانند استحکام، سفتی و پایداری حرارتی و ابعادی، چندین سال است که در ساخت هواپیماها به کار می‌روند. با رشد نانوتکنولوژی، کامپوزیت‌های پلیمری بیش از پیش به کار گرفته خواهند شد. 
تقویت پلیمرها با استفاده از مواد آلی یا معدنی بسیار مرسوم است. از نظر ساختاری، ذرات و الیاف معمولاً باعث ایجاد استحکام ذاتی می‌شوند و ماتریس پلیمری می‌تواند با چسبیدن به مواد معدنی، نیروهای اعمال‌شده به کامپوزیت را به نحو یکنواختی به پُرکن یا تقویت‌کننده منتقل کند. در این حالت، خصوصیاتی چون سختی، شفافیت و تخلخلِ مادهٔ درون کامپوزیت تغییر می‌کند. ماتریس پلیمری همچنین می‌تواند سطحِ پُرکن را از آسیب دور نماید و ذرات را طوری جدا از هم نگه دارد که رشد تَرَک به تأخیر افتد. گذشته از تمام این خصوصیات فیزیکی، اجزای مواد نانوکامپوزیتی می‌توانند بر اثر تعامل بین سطح ماتریس و ذرات پُرکن، ترکیبی از خواصّ هر دو جزء را داشته باشند و بهتر عمل کنند. 
کامپوزیت‌هایی که بستر فلزی دارند، کم‌وزن و سبک‌اند و به علت استحکام و سختیِ بالا، کاربردهای وسیعی در صنایع خودرو و هوا ـ فضا پیدا کرده‌اند. اما این کاربردها به لحاظ ضعف در قابلیت کشیده شدن در چنین کامپوزیت‌هایی، محدود شده‌اند. تبدیل کامپوزیت به نانوکامپوزیت سبب افزایش بازده استحکامی و رفع ضعفِ بالا می‌شود. 
● نانوکامپوزیت¬‌های نانوذره‌ای 
در این کامپوزیت‌ها از نانوذراتی همچون (خاک رس، فلزات، و…) به عنوان تقویت‌کننده استفاده می‌شود. برای مثال، در نانوکامپوزیت‌های پلیمری، از مقادیر کمّیِ (کمتر از ۱۰درصدِ وزنی) ذرات نانومتری استفاده می‌شود. این ذرات علاوه بر افزایش استحکام پلیمرها، وزن آنها را نیز کاهش می‌دهند. مهمترین کامپوزیت‌های نانوذره‌ای، سبک‌ترین آنها هستند. 
● نانوکامپوزیت‌های نانو‌لوله‌ای 
نانولوله‌های کربنی در دو گروه طبقه‌بندی می‌شوند: نانولوله‌های تک‌دیواره و نانولوله‌های چنددیواره. در این نوع از کامپوزیت‌ها، این دو گروه از نانولوله‌ها در بستری کامپوزیتی توزیع می‌شوند. در صورتی که قیمت نانوله‌ها پایین بیاید و موانع اختلاط آنها رفع شود، کامپوزیت‌های نانولوله‌ای موجب رسانایی و استحکام فوق‌العاده‌ای در پلیمرها می‌شوند و کاربردهای حیرت‌انگیزی همچون آسانسور فضایی برای آن قابل تصور است. 
تحقیقات در زمینهٔ توزیع نانولوله‌های کربنی در پلیمرها بسیار جدید هستند. علاقه به نانولوله‌های تک‌دیواره‌ و تلاش برای جایگزین کردن آنها در صنعت، به علت خصوصیات عالیِ مکانیکی و رسانایی الکتریکی آنها است. (رسانندگی الکتریکی این نانولوله¬ها در حد فلزات است.)  
اما در دسترس بودن و تجاری بودن نانولوله‌های چنددیواره، باعث شده است که پیشرفت‌ بیشتری در این زمینه صورت بگیرد. تا حدی که اکنون می‌توان از محصولاتی نام برد که در آستانهٔ تجاری شدنِ تولید هستند. برای نمونه، نانولوله‌های کربنیِ چنددیواره در پودرهای رنگ به کار رفته‌اند. 
استفاده از این نانولوله‌ها باعث می‌شود که رسانایی الکتریکی در مقدار کمی از فاز تقویت‌کننده به دست آید. از نظر نظامی نیز فراهم کردن هدایت الکتریکی فرصت‌های انقلابی به وجود خواهد آورد. به عنوان مثال، از پوسته‌های الکتریکی ـ مغناطیسی گرفته تا کامپوزیت‌های رسانای گرما و لباس‌های سربازان آینده‌! 

● نانوکامپوزیتِ خاک رُس ـ پلیمر 
نانوکامپوزیت خاک رُس ـ پلیمر یک مثال موردی از محصولات نانوتکنولوژی است. در این نوع ماده، از خاک رُس {۳} به عنوان پُرکننده برای بهبود خواص پلیمرها استفاده می‌شود. خاک رُس‌های نوع اسمکتیت {۴}، ساختار لایه‌لایه دارند و هر لایه تقریباً یک نانومتر ضخامت دارد. صدها یا هزاران عدد از این لایه‌ها به وسیلهٔ یک نیروی واندروالسیِ ضعیف روی هم انباشته می‌شوند تا یک جزء رُسی را تشکیل دهند. با یک پیکربندی مناسب، این امکان وجود دارد که رُس‌ها را به اَشکال و ساختارهای گوناگون، درون یک پلیمر به شکل سازمان‌یافته قرار دهیم. 
معلوم شده است که بسیاری از خواص مهندسی، هنگامی که در ترکیب ما از میزان کمی ــ معمولا ًچیزی کمتر از ۵ درصد وزنی ــ پُرکننده استفاده شود، بهبود قابل توجهی می‌یابد. 
امتیاز دیگر نانوکامپوزیت‌های خاک رُس ـ پلیمر این است که تأثیر قابل توجهی بر خواص اُپتیکی (نوری) پلیمر ندارند. ضخامت یک لایهٔ رُس منفرد، بسیار کمتر از طول موج نور مرئی است. بنابراین، نانوکامپوزیتی که خوب ورقه شده باشد، از نظر اُپتیکی شفاف است. از طرفی، با توجه به اینکه امروزه حجم وسیعی از کالاهای مصرفی جامعه را پلیمرهایی تشکیل می‌دهند که به‌راحتی می‌سوزند یا گاهی در مقابل شعله فاجعه می‌آفرینند، لزوم تحقیق در خصوص مواد دیرسوز احساس می‌شود. نتایج تحقیقات حاکی از آن است که میزان آتش‌گیری در این نانوکامپوزیت‌های پلیمری حدود ۷۰ درصد نسبت به پلیمر خالص کمتر است. در عین حال، اغلب خواص کاربردی پلیمر نیز تقویت می‌شوند. 
اولین کاربرد تجاری نانوکامپوزیت‌های خاک رُس ـ نایلون ۶، به عنوان روکش نوار زمان‌سنج برای ماشین‌های تویوتا، در سال ۱۹۹۱ بود. در حال حاضر نیز از این نانوکامپوزیت در صنعت لاستیک استفاده می‌شود. با افزودن ذرات نانومتریِ خاک رُس به لاستیک، خواص آن به طور قابل ملاحظه‌ای بهبود پیدا می‌کند که از جمله می‌توان در آنها به موارد زیر اشاره کرد: 
افزایش مقاومت لاستیک در برابر سایش 
افزایش استحکام مکانیکی 
افزایش مقاومت گرمایی 
کاهش قابلیت اشتعال 
کاهش وزن لاستیک 

● نانوکامپوزیت الماس ـ نانولوله 
محققان توانسته‌اند سخت‌ترین مادهٔ شناخته‌شده در جهان (الماس) را با نانولوله‌های کربنی ترکیب کنند و کامپوزیتی با خصوصیات جدید به دست آورند. اگرچه الماس سختیِ زیادی دارد، ولی به طور عادی هادی جریان الکتریسیته نیست. از طرفی، نانولوله‌های کربن به شکلی باورنکردنی سخت و نیز رسانای جریان الکتریسیته‌اند. با یکپارچه کردن این دو فُرمِ کربن با یکدیگر در مقیاس نانومتر، کامپوزیتی با خصوصیات ویژه به دست خواهد آمد. 
این کامپوزیت می‌تواند در نمایشگرهای مسطح کاربرد داشته باشد. الماس می‌تواند نانولوله‌های کربنی را در مقابلِ ازهم‌گسیختگی حفظ کند. در حالی که به طور طبیعی، وقتی نمایشگر را فقط از نانولوله‌های کربنی بسازند، ممکن است از هم گسیخته شوند. 
این کامپوزیت همچنین در ردیابی‌های زیستی کاربرد دارد. نانولوله‌ها به مولکول‌های زیستی می‌چسبند و به عنوان حسگر عمل می‌کنند. الماس نیز به عنوان یک الکترود فوق‌العاده حساس رفتار می‌کند. 
  • بازدید : 41 views
  • بدون نظر
دانلود رایگان گزارش کارآموزی شرکت آرین شیشه-خرید اینترنتی گزارش کارآموزی شرکت آرین شیشه-گزارش کارآموزی شرکت آرین یشه-دانلود رایگان پروژه کارآموزی شرکت آرین شیشه
این فایل در ۸۷صفحه قابل ویرایش تهیه شده وامل موارد زیر است:

امروزه موضوع حفاظت صنعتي از اهميت ويژه اي برخوردار است.همانطور كه مشخص شده حفاظت ايمني و توليد به هم وابسته اند.در محيطي كه در حفاظت از كاركنان به درستي تامين نشود ، انتظار توليد و بهره وري زيادي هم نمي توان از ان داشت. در اين پروژه سعي شده است تا اصول ايمني را با وضعيت موجود در شركت متالورژي پودر ايران ، مقايسه و تحليل كرده و در نهايت راه كارهاي

مناسبي را بيان كنيم.

شرکت آرین شیشه در سال ۱۳۷۹ به منظور ساخت سکوریت ونشکن کردن شیشه به صورت سهامی خاص تاسیس شد ودر طی ۱ دهه از فعالیت خود توانسته به یکی از ارکان مهم این صنعت در ایران نایل شود.

این شرکت فعالیت خود را در زمینی به مساحت حدود ۳۰۰۰ متر مربع در شهر صنعتی سیمین دشت واقع در کرج آغاز نموده است.

شرکت آرین شیشه در ابتدا فعالیت خود را در یک سوله آغاز نمود ولی به تدریج با توجه به سفارشات زیاد فعالیت خود را گسترش داد و هم اکنون با تعداد ۱۲۰ نفر پرسنل در ۳ سوله فعالیت خود را انجام میدهد.

در حال حاضر فعالیت هایی که در شرکت انجام می شود عبارت است از: سکوریت کردن و نشکن کردن شیشه از قبیل شیشه های معمولی و برنز ورفلکس ورنگی در اندازه های مختلف برای بکار بردن اجاق گاز،یخچال، بخاری وهود می باشد که با استفاده از تکنولوژی و تجهیزات روز صنعتی انجام میدهد.

شرکت آرین شیشه محصول خود را به کارخانجات تکنو گاز ،سینجر،اسنوا و هیمالیا توزیع میکند.

قسمت های واحد های مختلف این شرکت عبارتند از:قسمت برش، قسمت سنگ زنی(که فعالیت های آن به دو صورت سنگ دیاموند و سنگ لول انجام میگیرد) و درآخر که مقغوله اصلی شرکت میباشد قسمت سکوریت است.

این شرکت توانسته  با تولیدات خود نقش موثری در صنعت شیشه داشته باشد و نیازهای شرکت های بزرگ را به خوبی برآورده سازد با افزایش  دستگاههای صنعتی به چرخه تولید این شرکت،تولیدات شرکت بیش از پیش دقیق تر بهتر ونیز با کیفیت بهتری روانه بازار می شود.

برای اطفای حریق در این شرکت به علت وجود خطرات ناشی از آتش سوزی واهمیت مواد تولیدی از سنسورهای حساس به دود و پمپاژ آب استفاده میشود و همچنین برای ایمنی بیشتر تمام کارگران مجهز به دستکش- کلاه وپوشش مخصوص هستند.

شیشه

شیشه و انواع آن

از نظر فیزیکی ، میتوان شیشه را مایعی صلب ، فوقالعاده سرد و بدون نقطه ذوب مشخص تعریف کرد که گرانروي زیاداز نظر فیزیکی ، میتوان شیشه را مایعی صلب ، فوقالعاده سرد و بدون نقطه ذوب مشخص تعریف کرد که گرانروي زیاد ، مانع تبلور آن میشود.

میتوان شیشه را از نظر شمیایی ، یکی شدن اکسیدهاي غیرفرار معدنی حاصل از تجزیه و گداختگی ترکیبات قلیایی و قلیایی خاکی ، ماسه و سایر اجزاي شیشه دانست که منتهی به ایجاد محصولی با ساختار کره اي اتمها میشود.

 مانند بسیاري از مواد دیگر ، در مورد اختراع شیشه نیز تردید بسیاري وجود دارد. یکی از قدیمیترین استفادههاي موجود در این ماده ، ازپلینینقل شده که در طی آن ، گفته میشود که بازرگانان فنیقی ، ضمن پختن غذا در ظرفی که برحسب اتفاق روي تودهاي از لزونا در ساحل دریا قرار گرفته بود، به وجود این ماده پی بردند. یکی شدن ماسه و قلیا نظر آنان را به خود جلب کرد و سبب انجام تلاشهاي بعدي در راه تقلید این عمل شد.

مصريها در هزاره ششم پیش از میلاد ، جواهرات بدلی شیشهاي میساختند. در سال ۲۹۰ میلادي، شیشه پنجره ساخته شد. در طی قرون وسطی ، ونیز به مرکز انحصاري صنعت شیشه بدل شده بود در سال ۱۶۸۸ شیشه جام در فرانسه به شکل فراورده نو عرضه گردید. در سال ۱۶۰۸ میلادي ، در ایالات متحده ، در جیمزتاوندر ویرجینیا ،<span lang=


عتیقه زیرخاکی گنج