• بازدید : 33 views
  • بدون نظر
این فایل در ۴۱صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

چون مقدار زيادي از قدرت الكتريكي توليد شده بصورت متناوب ميباشد ، بيشتر موتورها طوري طرح شده اند كه با جريان متناوب كار كنند . اين موتورها در بيشتر موارد ميتوانند دو برابر موتورهاي جريان مستقيم كاركنن و زحمت آنها در موقع كاركردن كمتر است ، چون در موتورهاي جريان مستقيم هميشه اشكالاتي در كموتاسيون آنها ايجاد ميشود كه مستلزم عوض كردن ذغالها يا زغال گيرها و يا تراشيدن كلكتور است . بعضي موتورهاي جريان متناوب با موتورهاي جريان مستقيم كاملا فرق دارند ، بطوريكه حتي در آنها از رينگ هاي لغزنده هم استفاده نميشود و براي مدت طولاني بدون ايجاد درد سر كار ميكنند . 
موتورهاي جريان متناوب ، عملا براي كارهايي كه احتياج به سرعت ثابت دارند ، مناسب هستند . چون سرعت آنها به فركانس جريان متناوب اعمال شده به سر هاي موتور ، بستگي دارد . اما بعضي از آنها طوري طرح شده اند كه در حدود معين ، داراي سرعت متغير باشد . 
موتورهاي جريان متناوب ميتوانند طوري طرح شوند كه با منبع جريان متناوب يك فاز يا چند فاز كار كنند . ولي چه موتور يك فاز باشد و يا چند فاز ، روي اصول يكساني كار ميكنند ، اصول مزبور عبارتست از اين كه جريان متناوب اعمال شده به موتور يك ميدان مغناطيسي گرداني توليد ميكند و اين ميدان باعث ميشود كه روتور بگردد . 
 موتورهاي جريان متناوب عموما به دو نوع تقسيم بندي مي شوند :
۱- موتورهاي سنگرون 
۲- موتورهاي القايي . 
موتور سنكرون در واقع يك آلترناتور است كه بعنوان موتور كار ميكند و در آن جريان متناوب به استاتور و جريان مستقيم به روتور اعمال ميشود موتورهايي القايي شبيه به موتورهاي سنگرون هستند با اين تفاوت كه در آنها روتور به و منبع قدرت وصل ميشود . 
از دو نوع موتورهاي جريان متناوب ذكر شده ، موتورهاي القائي به مراتب خيلي بيشتر از موتورهاي سنكرون مورد استفاده قرار ميگيرند .  

ميدان گردان : 
همانطور كه گفته شد ميدان گرداني كه از اعمال جريان متناوب به موتور ، توليد ميگردد باعث گردش روتور ميشود . اما قبل از اينكه ياد بگيريد چگونه يك ميدان گردان باعث حركت روتور ميشود ، بايد اول درك كنيد كه چگونه يك ميدان گردان باعث حركت روتور ميشود ، بايد اول درك كنيد كه چگونه ميتوان ميدان مغناطيسي  گردان توليد كرد . دياگرام زير، يك استارتور سه فازه را نشان ميدهد كه جريان متناوب سه فاز آن اعمال شده است ، همانطور كه نشان داده است ، سهم پيچها بصورت دلتا به يكديگر اتصال دارند و كلاف هر يك از سيم پيچها بصورت دلتا به يكديگر اتصال دارند و دو كلاف هر يك از سيم پيچها در يك جهت سيم پيچي شده است . 
در هر لحظه ، ميدان مغناطيسي توليد شده بوسيله هر يك از سيم پيچها بستگي دارد به جرياني كه از آن ميگذرد . اگر جريان صفر باشد ،ميدان مغناطيسي هم صفر خواهد بود اگر جريان ماكزيمم باشد ، ميدان مغناطيسي هم ماكزيمم خواهدبود و چون جريان فازها ۱۲۰ درجه با هم اختلاف فاز دارند ، ميدان هاي مغناطيسي توليد شده هم ۱۲۰ درجه با هم اختلاف فاز خواهند داشت . حال سه ميدان مغناطيسي مزبور كه در هر لحظه وجود دارند ، با هم تركيب ميشوند و يك ميدان منتجه توليد ميكنند كه روي روتور عمل ميكند . در آينده خواهيد ديد كه هر لحظه ميدان هاي مغناطيسي تركيب ميشوند ، ميدان مغناطيسي منتجه پيوسته در حال حركت است و بعد از هر سيكل كامل جريان متناوب ، ميدان مغناطيسي مزبور هم با اندازه ۳۶۰ درجه يا يك دور دوران ميكنند.
دياگرام زير ، شكل موج جريانهاي اعمال شده به استاتور سه فازه مزبور را نشان ميدهد . اين شكل موج ها ۱۲۰ درجه با هم اختلاف فاز دارند . شكل موجهاي مزبور ميتوانند نشان دهنده سه ميدان مغناطيسي باشد كه بوسيله هر يك از سيم پيچ توليد ميشود . به شكل موجها وابسته شده است كه مشابه فاز مربوطه ميباشد با استفاده از شكل موجها ، ميتوانيم در هر ۶/۱ دور ( معادل ۶۰ درجه ) ميدانهاي مغناطيسي توليد شده را با هم تركيب كنيم تا جهت ميدان مغناطيسي منتجه پيدا شود. در نقطه ۱ ( شكل موج C مثبت وشكل B منفي است .به عبارت ديگر جريانهاي گذرنده از سيم پيچ هاي فاز C,B غير هم جهت هستند و بنابراين جهت ميدانهاي مغناطيسي ناشي از C,B هم غير هم جهت هستند . در بالاي نقطه ۱ جهت ميدان بطرز ساده اي نشان داده شده است . توجه داشته باشيد كه B1 قطب شمال و B قطب جنوب است همين ترتيب C قطب شمال و C1 قطب جنوب است . چون درنقطه۱ هيچ جرياني از سيم پيچ فاز نميگذرد ، ميدان مغناطيسي آن صفر است . 
نقطه ۲يعني ۶۰ درجه بعد ، شكل موج جريانهاي فازهاي B,A مساوي و مخالف يكديگر و شكل موج C صفر است و بنابراين ميدان مغناطيسي منتجه باندازه۶۰ درجه ديگر گرديده است . درنقطه ۳ ، شكل موج B صفر است و ميدان مغناطيسي منتجه با اندازه ۶۰ درجه ديگر ميگرد و به همين ترتيب از نقطه ۱تا نقطه ۷ ( مشابه يك جريان متناوب ۹ ميدان مغناطيسي منتجه باندازه يك دور كامل ميگردد . 
در نتيجه اعمال جريان متناوب سه فاز سه سيم پيچي كه بطور قرينه در اطراف اسناتور جاي گرفته باشند باعث ايجاد يك ميدان مغناطيسي گردان ميشود كه اين ميدان باعث دوران روتور ميشود .

موتور سنكرون :
علت اينكه به اين نوع موتورهاي سنكرون ميگويند اين است كه روتور آن  با ميدان مغناطيسي گردان توليد شده در استاتور همگام است . ساختمان اين موتورها اساس شبيه به آلترناتور قطب برجسته است . ميدانيد كه اعمال جريان سه فاز به استاتور يك ميدان مغناطيسي گردان در اطراف روتور توليد ميكند . اما چون روتوربه يك منبع جريان مستقيم وصل است مانند يك آهنرباي ميله اي عمل خواهد كرد . از قبل ميدانيد كه اگر يك آهنرباي ميله اي بطور معلق در يك ميدان مغناطيسي قرار بگيرد، آنقدر دوران خواهد كرد تا در امتداد آن قرار بگيرد . به همين ترتيب روتور سنكرون مانند يك آهنرباي ميله اي عمل كرده و در امتداد ميدان مغناطيسي توليد شده در استاتور قرار خواهد گرفت . در اين حالت اگر ميدان مغناطيسي دوران كند ، روتور هم همراه آن دوران خواهد كرد . اگر ميدان مغناطيسي گردان قوي باشد ، يك نيروي گردنده قوي بر روتور وارد شده و در نتيجه روتور قادر خواهد بود كه موقع گرديدن يك باري را بگرداند 
سرعت گردش ميدان مغناطيسي به فركانس جريان سه فاز اعمال شده به استاتور ، بستگي دارد و چون فركانس جريان ثابت است ، موتورهاي سنكرون، عملاً موتورهايي  با يك سرعت معني هستند. در نتيجه براي مواردي مورد استفاده قرار ميگيرند كه از حالت بي باري تا حالتي كه بار موتور ماكزيمم است سرعت ثابتي مورد نياز باشد 
  • بازدید : 49 views
  • بدون نظر
این فایل در ۷۱اسلاید قابل ویرایش تهیه شده وشامل موارد زیر است:

موتور پله‌ای را می‌توان جز گروه سیستم‌های محرکه بدون جاروبک به حساب آورد. کاربرد اصلی این نوع موتور در سیستم تثبیت و سیستم تنظیم موقعیت حلقه‌باز است. موتورهای پله‌ای از نوع ac هستند و فرمان ورودی به شکل پالس‌های الکتریکی است.
موتورهای DC زغالی زمانیکه ولتاژ به ترمینالهای آنها تزریق می گردد به نرمی حرکت می کنند. استپ موتور بوسیله قابلیت تبدیل پالسهای ورودی به فواصل کوچک مشخص در موقعیت شفت شناخته می شوند. هر پالس شفت را به یک زاویه مشخص می برد. استپ موتورها اساسا دارای دندانه های مغناطیسی در اطراف یک شفت مرکزی از جنس آهن می باشند. الکترومغناطیسها بوسیله یک مدار راه انداز خارجی یا یک میکروکنترلر تغذیه می گردند
چهار نوع اصلی از استپ موتورها وجود دارد :

۱- استپ موتورهای با مغناطیس دائم

۲- استپ موتورهای سنکرون هایبرید

۳- استپ موترهای با مقاومت مغناطیسی متغیر

۴- استپ موتورهای لاوت LAVET TYPE

روتور موتورهای مغناطیس دائم(PM) از مغناطیسهای دائم تشکیل گردیده است و و با جاذبه و دافعه بین مغناطیس روتور و مغناطیس استاتور عمل می نماید. موتورهای با مقاومت مغناطیسی متغیر از یک صفحه آهنی به عنوان روتور استفاده گردیده و بر این اساس عمل می نماید که حداقل مقدار مقاومت مغناطیسی ، زمانیکه روتور در حال جذب به سمت قطبهای استاتور است، زمانی رخ می دهد که حداقل فاصله وجود دارد . گروه سوم را به آین دلیل هایبرید می نامند که در ساختار آنها از دو تکنیک مغناطیس دائم و مقاومت مغناطیسی متغیر با هم، جهت رسیدن به حداکثر توان در کوچکترین فضا استفاده شده است
یک موتور تک قطبی دارای سیم پیچی با سر مرکزی می باشد. جریان در هر قسمت از سیم پیچ جهت ایجاد میدان مغناطیسی برقرار می گردد. در این آرایش ، قطبهای مغناطیسی بدون تغییر در جهت جریان می توانند معکوس گردند، بنابراین کموتاسیون در مدار به راحتی صورت می گیرد ( به عنوان مثال با یک ترانزیستور ) . اساسا ، هر فاز ، دارای یک سر مرکزی مشترک است : سه سیم برای هر فاز و شش سیم برای یک موتور دو فاز. اغلب سر مشترک هر دو فاز با هم یکی شده و بنابراین هر موتور دارای پنج سیم می باشد. به همین دلیل این موتورها را تک قطبی می نامند زیرا توان همواره از طریق همین قطب وارد می گردد.

یک میکروکنترلر یا کنترلر استپ موتور می تواند جهت فعال سازی ترانزیستورهای راه انداز در مسیر درست استفاده گردد. این عملکرد موتورهای تک قطبی باعث محبوبیت آنها گردیده است ، این راحت ترین راه جهت یک حرکت زاویه ای است.

(بوسیله اندازه گیری مقاومت دو سر سیم پیچها می توان آنها را شناسایی نمود. مقاومت بین سیم سر وسط و سیم انتهای کویل نصف مقاومت دو سیم انتهایی کویل می باشد. ) یک راه سریع جهت تست صحت عملکرد استپ موتور ، اتصال کوتاه کردن دو سر کویلها و سعی در چرخش شفت است، هر زمان که مقاومتی بیش از مقاومت نرمال احساس گردید نشانگر بسته بودن مدار آن سیم پیچ مشخص است و نشانه عملکرد صحیح فاز است.
موتورهای دوقطبی دارای یک سیم پیچ در هر فاز می باشند. جهت معکوس کردن قطبهای مغناطیسی جریان در یک سیم پیچ بایستی معکوس گردد، بنابراین مدار راه انداز پیچیده تر می باشد ، و اساسا با یک آرایش پل H بدست می آید. ( البته مدارات راه انداز زیادی برای این موضوع وجود دارد ). دو سیم برای هر فاز وجود دارد و هیچ سر مشترکی وجود ندارد.

در صورتیکه فرکانس اعمالی به استپ موتور بیش از فرکانس پاسخگویی موتور باشد باعث افزایش اثر اصطکاک ساکن می گردد.

به دلیل استفاده بهتر از سیم پیچها ، توان موتورهای دوقطبی نسبت به موتور تک قطبی هم وزن خود بیشتر است. این به دلیل فضای فیزیکی اشغال شده توسط سیم پیچهاست. یک موتور تک فاز دارای دوبرابر سیم بیشتر در حجم یکسان است اما نصف توان نقطه به نقطه در هر زمان را ارائه می دهد که به معنای تاثیر گذاری۵۰% یا حداکثر ۷۰% است. با وجود آنکه موتور دو قطبی جهت راه اندازی پیچیده تر است اما فراوانی تراشه های راه انداز به معنی آنست که دستیابی به این سیستم چندان هم سخت نیست.

یک استپ موتور ۸ سیمه مانند یک موتور تک قطبی است اما سیمها به سر مشترک وصل نیستند. این نوع سیم پیچی موتور به چند شکل قابل استفاده است :

– تک قطبی

– دوقطبی با سیم پیچی سری. این امر باعث ارائه اندکتانس بالاتر و جریان پایین تر در هر سیم پیچ می گردد.

– دو قطبی با سیم پیچی موازی. این امر نیاز به جریان بالاتر دارد اما می تواند باعث کاهش و بهینه شدن اندکتانس گردد.

– دوقطبی با یک سیم پیچ در هر فاز. این روش باعث راه اندازی موتور با نصف سیم پیچ قابل دسترس می گردد که باعث کاهش گشتاور سرعت پایین با جریان مورد نیاز کمتر می گردد.

با اندازه گیری مقاومت بین سیمها می توان این دو نوع موتور را از هم تشخیص داد. اگر دو سیمی که اندازه گیری می نمایید مربوط به دو کویل مجزا باشند مقاومت بینهایت دیده می شود.

مانند سایر موتورها ، استپ موتورها نیز به توانی بیش از آنچه میکروکنترلرها تامین می نمایند نیاز دارند بنابراین به یک منبع تغذیه مجزا نیازمندید. بصورت ایده آل بایستی ولتاژ اعلام شده توسط کارخانه سازنده را بدانید اما در صورت عدم اطلاع ، یک منبع تغذیه DC متغیر را به دو سیم یک کویل اعمال نمایید ، از ولتاژ حداقل ۳V آغاز نمایید و بتدریج آنرا افزایش دهید تا زمانیکه موتور بسختی به نظر می رسد آماده حرکت است. بیش از آن ولتاژ اعمال ننمایید چون باعث آسیب به موتور می گردد. اساسا ولتاژ مورد نیاز موتورها ۵V, 9V, 12V, 24V است و بالاتر از ۲۴Vبسیار نادر است.
  • بازدید : 56 views
  • بدون نظر

این فایل در ۳۰صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:


یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.
ماشينهاي الكتريكي از دو بخش اساسي تشكيل شده اند:
 الف)قسمت متحرك ودوار به نام رتور
 ب) قسمت ساكن به نام استاتور
  بين اين دو قسمت ،شكاف هوايي وجود دارد .
استاتو و رتور از مواد فرومغناطيسي ساخته مي‌شوند تا چگالي شار بيشتر گردد و در نتيجه اندازه و حجم ماشين كمتر شود.
نكته: اگر شار در رتور و استاتور متغير با زمان باشد ،هسته اهني لايه‌به‌لايه ساخته مي‌شود تا جريان گردابي كاهش يابد.
در بسياري از ماشينها محيط داخلي استاتور و محيط بيروني رتور حاوي شيارهاي متعددي است كه داخل آنها هادي‌ها جاسازي ميشوند، اين هاديها بهم وصل مي شوند و سيم پيچي حاصل مي شود.به سيم پيچي هايي كه در آنها ولتاژ القا مي شود ،سيم پيچي آرميچر اطلاق مي گردد. به سيم پيچ هايسي كه ار آنها جريان ميگذرد تا ميدان مغناطيسي و شار اصلي را پديد آورند، سيم پيچ تحريك يا سيم پيچ ميدان گفته مي شود.
سيم پيچ آرميچر تامين كننده تمام قدرتي است كه تبديل شده و يا انتقال مي يابد. قدرت نامي سيم پيچ آرميچر،‌هم در ماشين هاي DC و هم در ماشين هاي AC فقط با جريان متناوب كارمي كند.
ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد. 
اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند. 
انواع موتورهای الکتریکی 
موتورهای DC 
یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال ۱۸۲۱م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند. 
اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم. 
موتورهای میدان سیم پیچی شده 
آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود. 
موتورهای یونیورسال 
یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند. 

موتورهای AC 
موتورهای AC تک فاز: 
معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.
موتورهای AC سه فاز: 
برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.

سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم. 
موتورهای پله‌ای 
نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتا کنترل شده ، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند. 
موتور پله ای (Stepper Motor) یکی از انواع موتورهای الکتریکی است که حرکت آن کاملا دقیق و از پیش تعریف شده می باشد و با ارسال بیتهای ۰,۱به سیم پیچهای آن می توان آنرا حرکت داد. 
نحوه حرکت تمامی موتورها 
ساختار موتور پله ای 

این موتورعموما دارای چهار قطب میباشد که سیم پیچها بر روی این چهار قطب قرار می گیرند و شما با ارسال بیتهای ۰و۱به این سیم پیچها در واقع میدان مغناطیسی ایجاد می کنید که این میدان باعث حرکت روتورمغناطیسی موجود در داخل موتور پله ای می شود البته میبایست این سیم پیچها را به توالی ۰ و ۱ کرد و گرنه موتو ر مطابق میل شما نخواهد چرخید یکی از مشخصه های این موتور زاویه حرکت آن می باشد و هر موتوری زاویه حرکتی مخصوص به خودش را دارد مثلا اگر موتوری زاویه حرکتش ۷درجه باشد این موتور در هر بار ی که سیم پیچهایش حاوی ولتاژ می شوند ۷ درجه در سمت حرکت عقربه های ساعت یا خلاف جهت آن بسته به اینکه سیم پیچها با چه ترتیبی ولتاژ دار می شوند خو اهد چرخید این ۷ درجه چرخش برای این موتور پله ای نمونه یک پله یا یک step محسوب می شود با این تعریف متوجه شدید که یک موتور پله ای در یک دور کامل ممکن است.،۱۰۰تا ۲۰۰ پله کمتر یا بیشتر بسته به نوع موتور خواهد داشت.شما حتی می توانید یک موتور پله ای را به صورت نیم پله یعنی با نصف زاویه حرکت راه اندازی کنید این موتورها به صورت میکرو پله نیز حرکت می کنند در واقع منظور حرکت خیلی ریز ودقیق است. وقتیکه شما یک موتور پله ای را از نزدیک می بینید متوجه تعدادی سیم رنگی می شوید که از موتور پله ای بیرون آمده در واقع این سیم ها هر کدام به سر یک سیم پیج متصل هستند و یک سیم بین تمام سیم ها مشترک است 
نحوه کنترل 
این موتور به صورت ۱ بیتی یا دو بیتی حرکت می کند در حالت یک بیتی در هر لحظه تنها یک سیم پیچ پالس ۱ را دریافت می کند ودر حالت دو بیتی دو سیم پیچ در هر لحظه پالس ۱ را دریا فت می کنند اگر این دریافت پالس به صورت منظم و پشت سر هم انجام شو د موتور نیز به صورت صحیح به سمت جهت حرکت عقربه های ساعت یا خلاف جهت آن حرکت خواهد کرد. 

بیایید نحو ه کنترل موتور پله ای را در دو حالت یک بیتی یا دو بیتی بررسی کنیم 

نحوه کنترل ۱ بیتی 
در حالت یک بیتی اگر اول سیم پیچ ۱ را تحریک کنیم .سیم پیچ ۲و۳و۴ بدون تحریک باید باشند جهت حرکت موتور پله ای در سمت حرکت عقربه های ساعت بعد از سیم پیچ ۱ نوبت سیم پیچ ۲ است که تحریک شود.، و در این حالت نیز بقیه سیم پیچها بدون تحریک هستند بعد از آن نوبت سیم پیچ ۳ و سپس نوبت سیم پیچ شماره ۴ است دقت کنید که در هر لحظه یک سیم پیچ تحریک شو د اگر بعد از سیم پیچ ۱ سیم پیچ ۴ را تحریک کنیم و سپس به سراغ۳و۲ برویم موتور در جهت عکس عقربه های ساعت خواهد چرخید. 

نحوه کنترل ۲ بیتی 

در حالت دو بیتی در لحظه دو سیم پیچ بار دار می شو ند مثلا اگر اول سیم پیچ ۱ و۲ تحریک شوند بعد سیم پیچ ۲و۳ سپس ۳و۴ ودر نهایت ۴و ۱ برای حرکت موتور پله ای بایست همین ترتیب را تا موقعییکه می خوا هید موتور حرکت داشته باشد ادامه دهید حال اگر این ترتیب را عوض کنید موتور در خلاف جهت فعلی حرکت می کند 
  • بازدید : 38 views
  • بدون نظر
این فایل در ۱۲صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

يك موتور خطي در واقع يك موتور الكتريكي است كه استاتورش غير استوانه شده است تا به جاي اينكه يك گشتاور چرخشي توليد كند، يك نيروي خطي در راستاي طول استاتور ايجاد كند. 

طرح‌هاي بسياري براي موتورهاي خطي ارائه شده است كه مي‌توان آنها را به دو دسته تقسيم كرد: موتورهاي خطي شتاب بالا و شتاب پايين. موتورهاي شتاب پايين براي قطارهاي مگليو و ديگر كاربردهاي حمل و نقلي روي زمين مناسب هستند. موتورهاي شتاب بالا معمولاً خيلي كوتاه هستند و براي شتاب دادن به جسمي تا سرعت بسيار زياد و سپس رها كردن آن به كار مي‌روند. اين موتورها معمولاً براي مطالعات برخورد سرعت بالا به عنوان تسليحات نظامي يا به عنوان راه‌اندازنده جرمي براي پيشرانه فضاپيما به كار مي‌رود
ترن هوايي در JKF. به نوار القايي آلومينيومي بين ريل‌ها توجه كنيد. 
ايده موتور خطي اولين بار توسط پرفسور اريك ليتويت از كالج امپريال در لندن مطرح شد. در طرح وي و در اكثر طرح‌هاي شتاب پايين، نيرو توسط يك ميدان مغناطيسي خطي سيار كه بر روي هادي‌ها موجود در ميدان عمل مي‌كند، ايجاد خواهد شد. در هر هادي‌ چه يك حلقه، چه يك سيم‌پيچ يا يك تكه از فلز تخت كه در اين ميدان قرار گيرد جريان‌هاي گردابي القا شده وجود خواهد داشت و بنابراين يك ميدان مغناطيسي مخالف را ايجاد خواهد كرد. دو ميدان مغناطيسي همديگر را دفع خواهند كرد و بنابراين جسم هادي را از استاتور دور خواهند كرد و آن را در طول جهت ميدان مغناطيسي سيار حمل خواهند كرد. 
به علت اين ويژگي‌ها، موتور خطي اغلب در پيشرانه قطار مگليو به كار مي‌رود هر چند كه مي‌توان صرف نظر از پرواز مغناطيسي از آنها استفاده كرد، مانند استفاده در فن‌آوري انتقال پيشرفته و سريع نور كه در سيستم ترن آسماني ونكوور ، Scarborough RT تورنتو، ترن هوايي فرودگاه JGK نيويورك و Putra RTL كووالالامپور به كار مي‌رود. از اين فن‌آوري با تغييراتي در برخي از قطار‌هاي بازي نيز استفاده مي‌شود. 
موتورهاي خطي عمودي نيز براي مكانيسم‌هاي بالابر در معدن هاي عميق پيشنهاد شده است.
شتاب بالا
موتورهاي خطي شتاب بالا براي كاربرهاي متعددي پيشنهاد شده‌اند. به علت اينكه مهمات ضد زرهي كنوني بايستي گلوله‌هاي كوچكي با انرژي جنبشي بسيار بالا باشند يعني دقيقاً آنچه كه اين موتورها فراهم مي‌كنند، از آنها به عنوان تسليحات استفاده شده‌ است. اين موتورها همچنين براي استفاده در پيشرانه فضا پيماها به كار گرفته مي‌شود. در چنين شرايطي به اين موتورها راه‌اندازهاي جرمي گفته مي‌شود. ساده‌ترين روش استفاده از راه‌انداز جرمي براي پيشرانه فضا پيما، ساخت يك راه‌انداز جرمي بزرگ است كه بتواند محموله را تا سرعت گريز شتاب دهد. 

طراحي موتورهاي شتاب بالا به دلايل متعددي مشكل است. آنها مقادير بزرگ انرژي را در مدت زمان كوتاه نياز دارند. (http://www.oz.net/~coilgun/theory/electroguns.htm )) كه براي هر پرتاب در فضا نياز به ۳۰۰GJ در مدت زمان كمتر از يك ثانيه دارد. ژنراتورهاي الكتريكي معمولي براي چنين نوع از باري طراحي نشده‌اند اما روش‌هاي ذخيره انرژي الكتريكي كوتاه مدت را مي‌توان مورد استفاده قرار داد. خازن ‌ها پر حجم و گران هستند اما مي‌توانند به سرعت مقادير بزرگ انرژي را فراهم كنند. ژنراتورهاي هم قطب را مي‌توان براي تبديل سريع انرژي جنبشي يك چرخ طيار به انرژي الكتريكي به كار برد. موتورهاي خطي شتاب بالا نيازمند ميدان‌هاي مغناطيسي بسيار قوي‌اي نيز هستند، در واقع ميدان‌هاي مغناطيسي اغلب آنقدر قوي اند كه اجازه استفاده از ابر رساناها را نمي‌دهند. اما با طراحي دقيق مي‌توان اين مشكل را حل كرد. 
دو طرح متفاوت پايه‌اي از موتور‌هاي خطي شتاب بالا ابداع شده است: تفنگ‌هاي ريلي و تفنگ هاي كويلي.




سرو موتورهای خطی linmot سوئیس
موتورهای خطی linmot موتورهای الکترو مغناطیسی مستقیمی هستند که بدون استفاده از چرخ دنده ، اهرم و تسمه ، حرکت خطی بدون استهلاک ایجاد می کنند .
موتور تنها از دو قطعه تشکیل شده است : شفت داخلی (اسلایدر) و استاتور که شفت داخلی از مواد مغناطیسی نئودینیوم تشکیل شده است و داخل لوله استنسل استیل با دقت نصب شده است . استاتور از سیم پیچ ، یاتاقان داخلی ، سنسور های تعیین موقعیت و دما و مدارات الکترونیکی مجتمع تشکیل شده است .
مشخصات :
-سیستمهای حرکتی کاملا الکتریکی
-قابلیت تنظیم موقعیت در تمام طول حرکت
-انعطاف پذیر و قابل اعتماد
-جایگزین مناسب برای پنوماتیک
-دارای کلاس حفاظتی IP67
-دارای گواهینامه استفاده در اتاق پاک (clean room)
-سرعت زیاد (۴m/s) و شتاب بالا(۲۰۰m/s2)
کاربردها :
-ماشینهای بسته بندی
-سیستمهای مونتاژ و جابجایی با دقت بسیار بالا
-تجهیزات تولید قطعات نیمه هادی ، الکترونیک CD/DVD
-اتوماسیون آزمایشگاهی
-چاپ و برچسب زدن
-و بسیاری موارد دیگر

موتورهای خطی
یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.
در کاربردهاي مـدرن ، واژه سرو يا مکانيــسم سرو به يک سيستم کنـترلي فيدبک که متغير کنترل شونده ،  موقعيت يا مشتق موقعيت مکانيکي به عنوان سرعت و شتاب است، محدود مي شود.
يک سيستم کنترلي فيدبک ، سيـستم کنـترلي است که به نگهـداشتن يک رابطه مفروض بين يک کميت کنـترل شده و يک کميـت مرجع ، با مقايسه توابع آنها و اسـتفاده از اختلاف به عنوان وسيله کنترل منجر مي شود.

سيستم کنـترلي فيدبک الکتريکي ، عموما براي کار به انرژي الکتـريکي تکيه مي کند . مشخصـات مهمي که معمولا براي چنين کنترلي مورد نياز است ، عبارتند از :

۱- پاسخ سريع ،
۲- دقت بالا ،
۳- کنترل بدون مراقبت  و
۴- کارکرد از راه دور .

نياز هاي چنين کنترلي عبارتست از :

۱- وسيله آشکار سازي خطا ،
۲-  تقويت کننده  و
۳- وسيله تصحيح خطا ،
هر عنـصر هدف ويژه اي در هماهنگ کردن کميت مرجع با کميت کنترل شده ايفا مي کند . وسيله آشکـــارسازي خـطا هنــگامي که کميـت تنظيم شده متفاوت از کميت مرجع است ، خطا را آشکار مي کند . سپـس يک سيگنـال خطا به تقويت کنـنده اي که قــدرت وسيله تصـحيح خطا را فراهم مي کند مي فرسـتد . با اين تـوان وسيـله تصـحيح خطا ، کمـيت کـنترل شـده را آنـچنـــان تغيير مي دهد که با ورودي مرجع هماهنگ گردد .

به موتورهـايي که به سرعـت به سيگنال خطا پاسخ مي دهنـد و سريعا به بار شتاب مي دهنـد سرو موتور گفته مي شود . نسبت گشتاور به اينرسي (T/J) يک جنبه بسيار مهم يک سرو مـوتور است ،  زيرا  موتور با اين فاکتور شتاب مي گيرد .
مشخصات اصلي که در هر سرو موتور ديده مي شود عبارتست از :

عتیقه زیرخاکی گنج