• بازدید : 38 views
  • بدون نظر
این فایل در ۲۲۱صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

بحث نوسانات ولتاژو تاثييرات موقتي آن روي سيستم برق شايد در ابتدا به علت موقتي بودن اين اثرات از اهميت زيادي برخوردار نباشد ولي با دقت در اين موضوع كه اين نوسانات با عبور از روي شبكه برق و گذر كردن از روي تجهيزات و وسايل حساس برقي و با توجه به دامنه بالاي اين اثر مي تواند صدمات جبران ناپذيري به تجهيزات وارد كرده و باعث مي گردد اهميت اين موضوع دو صد چندان گردد و حتي مي تواند باعث ناپايداري خط عبوري انرژي گشته و صدمات جبران ناپذيري ايجاد كند . 
بنابراين بحث در مورد عوامل ايجاد كننده و تاثير گذار بر اين موضوع ايجاد راهكاري مناسب براي كم كردن اثرات نامطلوب اين موضوع و حدالامكان حذف كردن آن مي تواند كمك قابل توجهي به صنعت انتقال و توزيع برق داشته باشد و كمك شاياني به پايداري هر چه بيشتر سيستم انتقال نمايد. اما اكنون بايد ببينيم چه عواملي ايجاد كننده ي اين اثر نامطلوب مي تواند باشد اگر از خود بارهاي الكتريكي بحث را شروع كنيم مي بينيم كه بارها نيز مي تواند به عنوان يك عامل تاثير گذار در اين موضوع باشند بارهايي نظير كوره هاي الكتريكي موتورهاي الكتريكي و دستگاههاي جوش سهم به سزاييدر اين مطلب دارند و پديده هايي نظير flicker ولتاژ نيز مسئله با اهميتي است كه در جاي خود به بررسي آنها مي پردازيم . 
در ابتداي تبديل شدن اختراع برق بعنوان يك صنعت همه گير از آن بيشتر براي مصارف خانگي استفاده مي گردد كه اين مسائل از اهميت چندان زيادي برخوردار نبود ليكن با استفاده روز از فزون اين پديده جديد انرژي در صنعت اين مسائل اهميت خود را بخوبي نشان داد . 
البته بايد توجه داشت اين موضوع با افت ولتاژ دائمي در طول يك خط انتقال برق كاملا متفاوت مي باشد . 
۱- نوسانات ناشي از راه اندازي تجهيزات خاص در كارخانجات كه در هنگام شروع كار احتياج به مصرف بالايي دارند . 
۲- يكي ديگر از مسائل با اهميت كه باعث بوجود آمدن بحث پيچيده و با اهميت حفاظت در شبك هاي مختلف مي گردد بحث تغييرات ولتاژ ناشي از خطاهاي گذرا در شبكه . 
۱-۱ نوسانات ولتاژ ناشي از بارهاي مختلف : 
مي توان علت ايجاد اين نوسانات را اينگونه بررسي نمود كه با وارد شدن انواع بارهاي الكتريكي به شبكه با كشيدن جريان به سمت خويش باعث تغيير يكباره ميزان انرژي داخل شبكه برق مي گردد كه با افت ولتاژ ناگهاني در شبكه روبرو خواهيم بود كه البته در مورد بارهاي كوچك مي توان با استفاده از رگولاتورها اين مسئله را حل نمود ليكن در مورد بارهاي بزرگتر مانند كوره هاي القايي و موتورهاي جوش بزرگ اين راه نمي تواند براي نوسانات ناگهاني در ولتاژ خط كار موثري انجام دهد و باعث نوسانات ناگهاني در ولتاژ خط گردد . 
اما محدوده مجاز اين نوسانات براي بارهاي مختلف ؟ 
براي بررسي آن ابتدا مفهمومي تحت عنوان flicker ولتاژ را بررسي مي نماييم . 
هر عاملي كه باعث تغيير دامنه ولتاژ حتي در زمان خيلي كم گردد مي توند عاملي براي ايجاد flicker ولتاژ باشد مانند سوييچ كردن بارهاي مختلف چون جريان هجومي در لحظه راه اندازي از جريان حالت دايمي بيشتر مي باشد بعنوان مثال راه اندازي موتورها يكي از منابع اصلي و معمولي ايجاد فليكر مي باشد هم چنين بارهايي كه بصورت متناوب كار مي كنند و مانند دستگاههاي جوش قوسي يا نقطه اي و همچنين سوييچ كردن  ادوات تصحيح ضريب قدرت مانند انواع بانك هاي خازني. 
روشهاي جبران و تصحيح فليكر : 
در اين مورد بايد به چند نكته توجه داشت كه بارهاي متصل به شبكه هاي ضعيف در مقابل بارهاي متصل به شبكه هاي بهم پيوسته (stiff net work)  داراي نوسانات بيشتري خواهد بود . 
در مورد راه اندازي  موتوري مي توان با استفاده از راه اندازها اين مسئله را كاهش داد . 
در مورد بانك هاي خازني اگر همراه با بار سوييچ گردند هم مي توانند اثر نامطلوب وارد شدن خود آنها را كاهش داد بلكه مي توان اثرات مخرب بارها را نيز كاهش داد . 
بررسي اثرات TOV  بر يك شبكه نمونه : 
هنگام بي بار بودن شبكه قدرت براي يك مدت طولاني اضافه ولتاژ خطوط متصل به ژنراتور ها  مي تواند به يك TOV خطرناك منجر  گردد و حتي مي توند باعث ناپايداري آن قسمت از شبكه  گردد و به تجهيزات آن قسمت صدمه وارد مي كند بعنوان يك راه مقابله با آن اين است كه مطمئن باشيم در هنگام ولتاژ فرمان trip توسط دستگاههاي حفاظتي داده مي گردد و خط جدا مي گردد و هنگامي recloser بسته مي گردند كه اضافه ولتاژ از بين رفته باشد و نوسانات ولتاژ از بين رفته است . 
براي تعيين مدت زمان قابل تحمل براي تجهيزات كه منجر به از بين نرفتن عايق آنها مي باشد به ۳ دسته تقسيم مي گردد : 
۱- ولتاژ بيش از pu 1/6                  ms125
 2- ولتاژ بيش از pu 1/4                    ms 250
     3- ولتاژ بيش از pu 1/25                 sec1 
بر اساس اين آزمايش ها نتايج تاثير اضافه ولتاژ در ۲ پست بدست آمده است : 
 
اين اضافه ولتاژ ها ناشي از وصل كردن بانك خازني يا خطا (بعد از رفع كردن ان ) يعني براي خطا بعد از ۶ سيكل و براي بانك خازني بعد از ۴ سيكل از بين ميرود و احتياج به هيچ وسيله ي حفاظتي نمي باشد . 
اضافه ولتاژهاي ناشي از كليد زني : 
اضافه ولتاژهاي ناشي از كليد زني اكثر در خطوط uhv , EHV   مطرح مي گردد تا در طراحي سطح عايقي خطوط هوايي و كابل هاي زميني مورد توجه قرار گيرد اضافه ولتاژ ناشي از كليد زني در كابل هاي  KV63  , KV 20  قابل توجه مي باشد و علت آن هم عدم خود  ترميمي كابل هاي زميني مي باشد اما اين خود ترميمي چه مي باشد . 
اگر به يك خط هوايي دقت گردد ديده مي شود با آمده اضافه ولتاژ بر روي خط هواي اطراف خط يونيزه شده و برقگير ها عمل كرده و اين اضافه ولتاژ را DAMP مي كنند و تا آمدن اضافه ولتاژ بعدي اين هواي يونيزه شده جابجا مي گردد و ديگر نمي تواند مشكل ساز گردد اما  اين موضوع در مورد كابل هاي زميني متفاوت مي باشد چون در آنها اين اضافه ولتاژ ها نمي توانند damp گرداند و اگر كابل مورد اصابت نتواند اين اضافه ولتاژ لحظه اي را تحمل نمايد آن كابل را از دست خواهيم داد .
اين موضوع در مورد كابل هاي زميني كه مابين دو قسمت خط هوايي قرار مي گردد به شدت تاثير گذار مي باشد و اين موضوع با توجه به تعداد خاموشي هايي كه بعضي مواقع مواجه هستيم داراي اهميت فوق العاده بالايي مي باشد 
اگر سيستم مورد تغذيه مانند شكل زير باشد با اطلاعات موجود 
  • بازدید : 48 views
  • بدون نظر
این فایل در ۲۶صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

این فرستنده از ۳ طبقه نوسان ساز و فولاتور و تقویت کننده توان درست شده است و طرز کار آن بدین صورت است که نوسان ساز سیگنال حامل یا کریر را ایجاد می‌کند و منبع موزیکال ما هم سیگنال پیام را تولید می‌کند. سگینال پیام ما در ابتدا دارای فرکانس بسیار کمی است برای همین در طبقه دوم موولاتور وظیفه سوار کردن سیگنال پیام بر روی سیگنال حامل تولیدی از طبقه اول و افزایش فرکانس آن را برعهده دارد که همان مدولاسیون است و سیگنال خروجی ما از طبقه دوم وارد طبقه سوم یا تقویت کننده توان ما می‌شود و در این مرحله سطح سیگنال افزایش یافته و توان آن زیاد می‌شود در این مرحله ما با استفاده از ۲ خازن تریمر و تنظیم آنها یعنی چرخاندن پیچ تنظیم آنها می‌توانیم ماکزیمم توان را به خروجی بدهیم 
در انتها ما در خروجی طبقه سوم یک آنتن دایپل با مقاومت   (اهم) استفاده کرده‌ایم و به دلیل اینکه خروجی طبقه سوم ما R0 نیز ۷۵ اهم است از شبکه منطبق استفاده نکردیم آنتن دایپل به صورت کروی و در همه جهات امواج و سیگنال ما را پخش می‌کند یعنی می‌فرستد و ما یا تنظیم گیرنده که در اینجا رادیو است بر روی فرکانس کاری یعنی ۵/۱۰۸-۸۸ مگاهرتز می‌توانیم سیگنال فرستاده شده را به خوبی و وضوح تا فاصله ۴km دریافت کنیم این سیگنال همان سیگنال پیام است که منبع موزیکال آن را تولید کرده بوده در واقع این فرستنده حکم یک رادیو محلی را دارد که ساکنان آن محل با تنظیم فرکانس رادیو خود می‌توانند امواج ما را دریافت کنند این امواج می‌تواند هر سیگنالی باشد در اینجا موسیقی حاصل از منبع موزیکال است و اگر از میکروفن خازنی به جای منبع موزیکال استفاده می‌کردیم ساکنان می‌توانند امواج سیگنال حاصل از صحبت کردن ما در میکروفون خازنی را دریافت کنند. 
در اینجا ما یک فرستنده fm با توان ۴۰۰ میلی وات داریم و نوع مدولاسیون آن WIOEBANDFM بوده و دارای فرکانس کاری ۵/۱۰۸-۸۸ مگا هرتز می باشد این فرستنده تا محدوده ۴km را پوشش می‌دهد. 
نکته: 
۱٫ در این فرستنده مقاومت خروجی‌ها R0   بوده و آنتن ما هم ۷۵ اهم است در نتیجه از شبکه تطبیق استفاده نکردیم. 
۲٫ ما از نسب سطحی استفاده کرده‌ایم تا نویز را به حداقل مقدار خود برسانیم و به دلیل حساسیت فوق العاده، این فرستنده روی برد بورد تا برد ۴۰۰۰ سوراخه اصلا جواب نمی‌دهد و حتما باید نسب سطحی انجام دهیم (مدل جزیره‌ای) 
۳٫ ما می‌توانستیم به جای مواد موزیکال از میکروفن خازنی استفاده کنیم تا به جای موزیک صدای انسان پخش شود ولی به دلیل راحتی کار برای تنظیم و پخش مواوم صدا از مدار موزیکال استفاده کرده‌ایم. 
۴٫ این فرستنده دارای منبع تغذیه یا ولتاژ ۹ تا ۱۴ ولت می‌باشد ولی به دلیل قدرت فوق العاده در ۹ ولت هم به خوبی جذب می‌گیریم. 
 
مشخصات فنی: 
منبع تغذیه: ۱۲ تا ۱۴ ولت DC رگوله شده (۱۰۰ ملیی متر) 
قدرت خروجی: ۴۰۰ میلی وات 
امپدانس خروجی: ۵۰ تا ۷۵ اهم
نوع مدولاسیون: WIDE BAND FM 
محدوده فرکانسی: ۵/۸۷ تا ۱۰۸ هرتز
نقشه شماتیک: 
نقشه شماتیک مدار در شکل زیر ضمیمه شده است. در متن اصلی این پایان نامه طرز کار مدار توضیح داده شده است. این نقشه را در spicc طراحی کرده‌ام که به همراه طراحی تفکیک شده طبقات اول و دوم در ادامه آورده‌ام. 
ساخت مدار: 
در مورد فیبر مدار فرستنده ساخته شده یک نکته بسیار مهم وجود دارد: 
همگی قطعات مدار از سمت مسی مدار چاپی روی آن نصب می‌شوند و هیچگونه سوراخکاری در فیبر مدار چاپی انجام نمی‌شود. 
به دلیل حساسیت مونتاژ، نصب قطعات بایستی دقیقا مانند نقشه جزیره‌های (Island) چاپ شده توسط نرم افزار انجام شود. در جدول چاپ شده فهرست قطعات مدار مشاهده می‌شود. 
برای ساخت و مونتاژ مدار بایستی به نکات زیر توجه کرد: 
– خازن‌ها غیر الکترولیک و‌از نوع‌(عدسی) سرامیک هستند و‌از به کار بردن خازن‌های پلی استر (که در فرکانس بالا خوب عمل نمی‌کند) خودداری کرده‌ایم. 
– همگی سیم پیچ‌ها از سیم مسی ۷/۰ میلی متر روی استوانه بقطر داخلی ۶ میلی متر و به تعداد دور مشخص شده در جدول پیچیده می‌شوند. پس از پیچیدن هر سیم پیچ می‌توان استوانه (Former) را از آن خارج نمود. 
– ورودی مدار (اتصال به منبع صوتی) در محل Audio Source می‌باشد و مقاومت متغیر (پتانسیومتر ولوم دار) R2 حجم صدای ورودی را کنترل می‌کند. 
– مقاومت متغیر R1 با تغییر دادن ولتاژ دیود واریکاپ D1 فرکانس نوسان مدار را تغییر می‌دهد. (در طبقه اول) 
– خروجی مدار محل Vout در شماتیک Pspice می‌باشد که بوسیله یک کابل ۷۵ اهمی (Coaxial) به آنتن دایپل متصل می‌شود. 







تنظیم مدار: 
یک عدد لامپ ۶ ولت (۱۰۰ میلی آمپر) را به خروجی اتصال داده و با تغییر دادن R1 دستگاه را روی فرکانس مورد نظر تنظیم می‌کنیم. ممکن است نیاز باشد حلقه‌های سلف با هسته هوایی L1 را کمی باز و بسته کنیم تا فرکانس مورد نظر بدست آید. سپس‌بوسیله تغییر‌و تنظیم‌خازنهای تریمر C14 و‌(Trimmer) C15 می‌توان به بیشترین شدت روشنایی لامپ) دست پیدا کرد. 
سپس آنتن و ورودی صوتی را به مدار اتصال می‌دهیم. مقاومت متغیر R2 را برای دریافت قویترین صدا تنظیم می‌کنیم. 
با آنتن مناسب (آنتن دایپل با طول زیاد و در فضای خارج) فرستنده پوشش بسیار خوبی در فاصله ۵۰۰ متری می‌دهد و حداکثر فضای پوشش فرستنده بیش از ۴ کیلومتر است. 
این فرستنده از ۳ طبقه تشکیل شده است. 
– طبقه اول: 
تحلیل و طراحی نوسانساز کولپیتس فرستنده: 
نوسانساز کولپیتس بیس مشترک را به این خاطر برگزیده‌ام که غالبا به عنوان نوسانساز RF به کار می‌رود. این نوسانساز دارای این مزایاست که می‌توان آن را تا حوالی فرکانس fa ترانزیستور به کار برد (به خاطر آرایش بیس مشترکی که دارد) و در آن نیازی به القاگر با سر وسط (به صورت به کار رفته در نوسانساز هارتلی) نیست. 
در تحلیل سیگنال کوچک ترانزیستور را به صورت شکل ۱ مدل می‌کنیم. این مدار از مدل هیبرید پای گرفته شده است. البته اعتبار آن زیر سوال است ولی نتایج حاصل از آن با نتایج به دست آمده از آزمایش اکثر نوسانسازها مطابقت خوبی دارد. 
مدار کامل نوسانساز در شکل ۲ به چشم می‌خورد. در این شکل RL مقاومت بار و Cf خازن تنظیم فرکانس است. 
  • بازدید : 57 views
  • بدون نظر
این فایل در ۲۲۱صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

بحث نوسانات ولتاژو تاثييرات موقتي آن روي سيستم برق شايد در ابتدا به علت موقتي بودن اين اثرات از اهميت زيادي برخوردار نباشد ولي با دقت در اين موضوع كه اين نوسانات با عبور از روي شبكه برق و گذر كردن از روي تجهيزات و وسايل حساس برقي و با توجه به دامنه بالاي اين اثر مي تواند صدمات جبران ناپذيري به تجهيزات وارد كرده و باعث مي گردد اهميت اين موضوع دو صد چندان گردد و حتي مي تواند باعث ناپايداري خط عبوري انرژي گشته و صدمات جبران ناپذيري ايجاد كند 
در ابتداي تبديل شدن اختراع برق بعنوان يك صنعت همه گير از آن بيشتر براي مصارف خانگي استفاده مي گردد كه اين مسائل از اهميت چندان زيادي برخوردار نبود ليكن با استفاده روز از فزون اين پديده جديد انرژي در صنعت اين مسائل اهميت خود را بخوبي نشان داد . 
البته بايد توجه داشت اين موضوع با افت ولتاژ دائمي در طول يك خط انتقال برق كاملا متفاوت مي باشد . 
۱- نوسانات ناشي از راه اندازي تجهيزات خاص در كارخانجات كه در هنگام شروع كار احتياج به مصرف بالايي دارند . 
۲- يكي ديگر از مسائل با اهميت كه باعث بوجود آمدن بحث پيچيده و با اهميت حفاظت در شبك هاي مختلف مي گردد بحث تغييرات ولتاژ ناشي از خطاهاي گذرا در شبكه . 
۱-۱ نوسانات ولتاژ ناشي از بارهاي مختلف : 
مي توان علت ايجاد اين نوسانات را اينگونه بررسي نمود كه با وارد شدن انواع بارهاي الكتريكي به شبكه با كشيدن جريان به سمت خويش باعث تغيير يكباره ميزان انرژي داخل شبكه برق مي گردد كه با افت ولتاژ ناگهاني در شبكه روبرو خواهيم بود كه البته در مورد بارهاي كوچك مي توان با استفاده از رگولاتورها اين مسئله را حل نمود ليكن در مورد بارهاي بزرگتر مانند كوره هاي القايي و موتورهاي جوش بزرگ اين راه نمي تواند براي نوسانات ناگهاني در ولتاژ خط كار موثري انجام دهد و باعث نوسانات ناگهاني در ولتاژ خط گردد . 
اما محدوده مجاز اين نوسانات براي بارهاي مختلف ؟ 
براي بررسي آن ابتدا مفهمومي تحت عنوان flicker ولتاژ را بررسي مي نماييم . 
هر عاملي كه باعث تغيير دامنه ولتاژ حتي در زمان خيلي كم گردد مي توند عاملي براي ايجاد flicker ولتاژ باشد مانند سوييچ كردن بارهاي مختلف چون جريان هجومي در لحظه راه اندازي از جريان حالت دايمي بيشتر مي باشد بعنوان مثال راه اندازي موتورها يكي از منابع اصلي و معمولي ايجاد فليكر مي باشد هم چنين بارهايي كه بصورت متناوب كار مي كنند و مانند دستگاههاي جوش قوسي يا نقطه اي و همچنين سوييچ كردن  ادوات تصحيح ضريب قدرت مانند انواع بانك هاي خازني. 
روشهاي جبران و تصحيح فليكر : 
در اين مورد بايد به چند نكته توجه داشت كه بارهاي متصل به شبكه هاي ضعيف در مقابل بارهاي متصل به شبكه هاي بهم پيوسته (stiff net work)  داراي نوسانات بيشتري خواهد بود . 
در مورد راه اندازي  موتوري مي توان با استفاده از راه اندازها اين مسئله را كاهش داد . 
در مورد بانك هاي خازني اگر همراه با بار سوييچ گردند هم مي توانند اثر نامطلوب وارد شدن خود آنها را كاهش داد بلكه مي توان اثرات مخرب بارها را نيز كاهش داد . 
بررسي اثرات TOV  بر يك شبكه نمونه : 
هنگام بي بار بودن شبكه قدرت براي يك مدت طولاني اضافه ولتاژ خطوط متصل به ژنراتور ها  مي تواند به يك TOV خطرناك منجر  گردد و حتي مي توند باعث ناپايداري آن قسمت از شبكه  گردد و به تجهيزات آن قسمت صدمه وارد مي كند بعنوان يك راه مقابله با آن اين است كه مطمئن باشيم در هنگام ولتاژ فرمان trip توسط دستگاههاي حفاظتي داده مي گردد و خط جدا مي گردد و هنگامي recloser بسته مي گردند كه اضافه ولتاژ از بين رفته باشد و نوسانات ولتاژ از بين رفته است . 
براي تعيين مدت زمان قابل تحمل براي تجهيزات كه منجر به از بين نرفتن عايق آنها مي باشد به ۳ دسته تقسيم مي گردد : 
۱- ولتاژ بيش از pu 1/6                  ms125
 2- ولتاژ بيش از pu 1/4                    ms 250
     3- ولتاژ بيش از pu 1/25                 sec1 
بر اساس اين آزمايش ها نتايج تاثير اضافه ولتاژ در ۲ پست بدست آمده است 
اين اضافه ولتاژ ها ناشي از وصل كردن بانك خازني يا خطا (بعد از رفع كردن ان ) يعني براي خطا بعد از ۶ سيكل و براي بانك خازني بعد از ۴ سيكل از بين ميرود و احتياج به هيچ وسيله ي حفاظتي نمي باشد . 
اضافه ولتاژهاي ناشي از كليد زني : 
اضافه ولتاژهاي ناشي از كليد زني اكثر در خطوط uhv , EHV   مطرح مي گردد تا در طراحي سطح عايقي خطوط هوايي و كابل هاي زميني مورد توجه قرار گيرد اضافه ولتاژ ناشي از كليد زني در كابل هاي  KV63  , KV 20  قابل توجه مي باشد و علت آن هم عدم خود  ترميمي كابل هاي زميني مي باشد اما اين خود ترميمي چه مي باشد . 
اگر به يك خط هوايي دقت گردد ديده مي شود با آمده اضافه ولتاژ بر روي خط هواي اطراف خط يونيزه شده و برقگير ها عمل كرده و اين اضافه ولتاژ را DAMP مي كنند و تا آمدن اضافه ولتاژ بعدي اين هواي يونيزه شده جابجا مي گردد و ديگر نمي تواند مشكل ساز گردد اما  اين موضوع در مورد كابل هاي زميني متفاوت مي باشد چون در آنها اين اضافه ولتاژ ها نمي توانند damp گرداند و اگر كابل مورد اصابت نتواند اين اضافه ولتاژ لحظه اي را تحمل نمايد آن كابل را از دست خواهيم داد .
اين موضوع در مورد كابل هاي زميني كه مابين دو قسمت خط هوايي قرار مي گردد به شدت تاثير گذار مي باشد و اين موضوع با توجه به تعداد خاموشي هايي كه بعضي مواقع مواجه هستيم داراي اهميت فوق العاده بالايي مي باشد 
اگر سيستم مورد تغذيه مانند شكل زير باشد با اطلاعات موجود : 
 

عتیقه زیرخاکی گنج