• بازدید : 50 views
  • بدون نظر
این فایل در قالب pdfتهیه شده وشامل موارد زیر است:

پزشکی هسته‌ای (به انگلیسی: Nuclear mارایهedicine) شاخه‌ای از تصویربرداری پزشکی، فیزیک پزشکی[۱] و پرتونگاری مولکولی، است که از خواص هسته‌ای مواد (مثل رادیوایزوتوپ‌ها) برای تشخیص و درمان بیماری‌ها استفاده می‌کند. داروسازی هسته‌ای نیز به این شاخه از علوم پایهٔ پزشکی کمک می‌کند.
ویژگی پزشکی هسته‌ای در این است که توانایی ارائه‌دادن اطلاعات تصویری از فرایندها و عملکردهای متابولیکی بدن را دارد در صورتیکه دیگر مدالیته‌های تصویر برداری‌های پزشکی همانند مقطع‌نگاری رایانه‌ای و ام‌آرآی عموماً اطلاعات ساختاری و آناتومیکال تولید می‌کنند.[۲]
پرکاربردترین رادیوایزوتوپ در پزشکی هسته‌ای تکنیتیوم-۹۹m است. و از مدالیته‌های پر استفاده در پزشکی هسته‌ای می‌توان مقطع‌نگاری با نشر پوزیترون و مقطع‌نگاری رایانه‌ای تک‌فوتونی (به انگلیسی: SPECT) را نام برد. در حالت تلفیقی (به انگلیسی: hybrid) نیز سیستم‌های پت-سی‌تی و اسپکت-سی‌تی بسیار پر مصرفند.
اولین آثار رادیواکتیویته در سال ۱۸۶۷ توسط سنت ویکتور برروی امولسیون فیلم مشاهده گردید. پس از او، در سال ۱۸۹۶، هانری بکرل، در جریان بررسی خاصیت لومینانس املاح اورانیوم، پی به وجود اشعه‌ای نظیر اشعهٔ ایکس برد. بکرل املاح اورانیوم را در صفحات فوتوگرافی قرار داد و دور از نور در جایی نگاه داشت و پس از ظاهرکردن آن‌ها به وجود اشعه‌ای ناشناخته پی برد. این کشف بکرل بعدها در ۲۶ دسامبر ۱۸۹۸ منجر به اعلام کشف رادیوم توسط پییر و ماری کوری گردید. در ۱۸۹۹، رادرفورد نشان داد که دو نوع تابش از املاح اورانیوم ساطع می‌شود، و این ذرات را آلفا و بِتا نامید. در ۱۹۰۰، کوری و ویلارد نوع سومی از این تابش‌ها را کشف کردند و آن را گاما نامیدند. در ۱۹۰۸ معلوم شد که آلفا و بتا تحت تأثیر میدان مغناطیسی منحرف می‌شوند، ولی گاما چنین انحرافی از خود نشان نمی‌دهد.

در سال ۱۹۱۱، رادرفورد در آزمایش معروف خود نشان داد که تقریباً تمام فضای اتم خالی و متشکل از الکترون‌هایی است که در اطراف هسته‌ای کوچک، چگال و مبهم می‌چرخند، و در سال ۱۹۳۵ یوکاوا پیشنهاد کرد که نیروی بستگی هسته به‌صورت نیروی تبادلی است. واژهٔ رادیواتم و تعریف آن نخستین بار توسط کوهمن در سال ۱۹۴۷ برای نامیدن اتم‌هایی که دارای نیمه‌عمر زوال رادیواکتیو قابل اندازه‌گیری هستند، وضع شد. تصویرگری به کمک رادیواتم‌ها در سال ۱۹۴۹ بعد از آن که اسکنر خط مستقیم تولید شد، آغاز گردید. معرفی دوربین جرقه‌ای، دوربین آنگر و یا دوربین گاما و امکان اخذ سریع تصاویر رادیواتمی، بدون احتیاج به حرکت جارویی (آشکارسازی ساکن)، مهمترین پیشرفت در ابزارهای تصویرگر هسته‌ای بود
نخستین[۳] آزمایش استفاده از تزریق رادیوایزوتوپ در تصویربرداری از یک انسان، توسط هرمان ال بلومگارت[پانویس ۱] و سوماً وایس[پانویس ۲] از دانشگاه هاروارد انجام گرفت. این آزمایش در سال ۱۹۲۷ و به‌کمک یک اتاقک ابری و رادون انجام گرفت.[۴] با وجود تلاشهای فراوان، این آزمایش‌ها موفقیت‌آمیز نبودند، و این محققان آزمایشگاه ملی لارنس برکلی بودند که برای نخستین بار توانستند با موفقیت از یک رادیوایزوتوپ در محیطی بالینی بهره ببرند.[۵] آنها بکمک سیکلوترون معروف خود ایزوتوپ ید-۱۳۱ تولید کردند که برای پروژه‌های تیروئیدی بکار رفت. از همین ایزوتوپ مدت کوتاهی بعد برای سرطان تیروئید و پرکاری تیروئید استفاده گردید.[۶] [۷][۸]

هل انگر در سال ۱۹۵۸ دوربین انگر را در دانشگاه برکلی ابداع کرد.[۹] همچنین استفاده از رادیوایزوتوپ تکنیتیوم-۹۹m در ۱۹۶۴ توسط تیم متشکل از پل هارپر[پانویس ۳] و نیز رابرت بک[پانویس ۴] از دانشگاه شیکاگو[۱۰] باعث ایجاد نقطه عطفی در تاریخ فیزیک پزشکی و پزشکی هسته‌ای گردید.
استفاده از مواد پرتوزا در پزشکی در ایران با سنجش مقدار یُد رادیواکتیو در سال ١٣٣٩ به وسیلهٔ یک شمارشگر گایگر در آزمایشگاه پیمان مرکزی دانشکده علوم پزشکی تهران آغاز گردید. در این راستا، یک کارشناس بریتانیایی به نام Malcolm Cuthbert Nokes سهم بزرگی در پیشرفت کار پزشکی هسته‌ای در ایران ایفا کرد.[۱۲] با یاری وی، دکتر نظام مافی برای اولین بار در سال ۱۳۴۰ با یک پویشگر تیروئید، تحقیقاتی را به انجام رسانید و پایه‌های پزشکی هسته‌ای را در ایران بنا نهاد.[۱۳] در سال ١٣۴۶، مرکز پزشکی هسته‌ای و تحقیقات غدد مترشحه داخلی دانشگاه تهران تاسیس شد که در واقع اولین و قدیمی ترین مرکز پزشکی هسته‌ای کشور محسوب می‌شود. امکانات این بخش در آن زمان در حد یک دستگاه دوربین انگر بود که تدریجاً مجهزتر گردید.[۱۴]

در این میان، از زمان تاسیس، سازمان انرژی اتمی ایران وظیفهٔ تأمین پرتوداروهای موردنیاز برای درمان بیماران را بر عهده داشته‌است.[۱۵]

از متخصصین ایرانی فعال در خارج از ایران که نقش بسزایی در پیشرفت پزشکی هسته‌ای داشتند می‌توان به عباس علوی اشاره کرد که در دهه ۱۹۷۰ میلادی شاگرد و یکی از اعضای تیم دیوید کوهل بود که نامش در ابداع سیستم‌های اسپکت به‌همراه وی دیده می‌شود.[پانویس ۵][۱۶] جامعه پزشکی هسته‌ای آمریکا همچنین، به‌خاطر خدمات علمی وی در گسترش سیستم‌های پت اسکن، در سال ۲۰۰۴ به وی یکی از بالاترین جوایز خود که جایزهٔ دِهِوِسی برای پیشبرد برجستهٔ پزشکی هسته‌ای است[پانویس ۶] را اهدا کرد.[۱۷] آنچه بسیار حائز اهمیت می‌باشد، اطمینان از ضرورت استفاده از این روش می‌باشد، چراکه در اغلب مواد رادیواکتیو استفاده شده در روزهای آتی، پس از ترخیص، به ترتیب در روزهای اول و دوم و سوم ۶۰٪ و ۲۰٪ و ۵٪، فعالیت دارد. با این حال، ۷۵٪ تصاویر گرفته‌شده، توجیه و دلیل منطقی‌ای ندارند!
  • بازدید : 42 views
  • بدون نظر
این فایل در ۱۳صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

بعد از جنگ جهانی دوم از مشتقات فرعی مواد سمی کلین – تیوکولین فسفون (Cholin – Thiocholinphosphon) و فلورفسفن زوره استرن، یک گروه جدید سموم عصبی با اثرات عمیق برای آماج های نظامی ساخته شده است که با علامت V مواد جنگی مشخص می گردد. معروفترین نوع این گروه در آمریکا با نام رمزی VX قابل شناسایی است. 

توسعه ی جنگ افزارهای شیمیایی دوترکیبی در آمریکا در ۱۹۵۴ آغاز شد. نخست بر وری توسعه ی بمب هایی با کالیبر بزرگ از نوع «بیگ آی» و گلوله ی توپخانه ۱۵۵ mm تأکید شد. این بمب ها قادر بودند آماج هایی را در عمق و رده عقب نیروی دشمن در فاصله ی ۵۰۰ کیلومتری مورد اصابت قرار دهند. در ضمن، عوامل مزبور مقاوم و پایدارند، به طوری که متجاوز از شش ماه در منطقه باقی می مانند
نیروهای نظامی آمریکا و پاره ای از کشورها از جمله عراق، جنگ افزارهای شیمیایی از نوع سموم دوترکیبی اعصاب سارین و VX در اختیار دارند. علائه بر دو نوع جنگ افزار مزبور که در گلوله های توپخانه ی کاتیوشا و کلاهک های جنگی برای موشک های زمین به زمین و نارنجکهای دستی برای رزم نزدیک به کار می رفت، از ترکیبات شیمیایی جنگی فسفری نیز در موشک های کروز برای فواصل دور استفاده شده است. 
مشخصات جنگ افزارهای شیمیایی دوترکیبی 

جنگ افزارهای شیمیایی دوترکیبی یک نوع جنگ افزار جدید می باشد که ساختمان آن از دو نوع مواد شیمیایی تشکیل شده است. این مواد که هر یک از آنها به تنهایی سمی نیستند، در دو محفظه ی جداگانه قرار می گیرند و فقط موقعی مرگ بار می شوند که این مواد با هم ترکیب گردند و این زمانی است که موشک یا گلوله ی توپخانه و یا بمب به طرف آماج حرکت کند. در این موقع است که هر دو ماده در مدت چند ثانیه با یکدیگر ترکیب می شوند و سپس در اثر فعل و انفعالات شیمیایی به یک ماده ی سمی جنگی از نوع عصبی بسیار قوی تبدیل می گردند، به ویژه آنهایی که از گروه ترکیبات فسفری و از موادی مانند سارین یا V و VX باشند. 

در اثر مسمومیت های حاد بر اثر جنگ افزارهای شیمیایی دوترکیبی، به علت اثرات بیوشیمیایی دو نوع علامت کامل ظاهر می شوند: 





۱٫ اثرات بدنی و عضلانی 

در اینجا علائمی مانند ارتعاش چشم ها، انقباض نای، دل درد و تهوع، رنگ پریدگی، جاری شدن ادرار و مدفوع و گرفتگی عضلات ظاهر می شود. 
۲٫ تأثیر بر روی سیستم مرکزی اعصاب 

لرزش، سرگیجه و سردرد از جمله علائم اصلی به شمار می روند و تا حدی افزایش می یابند که برای فرد غیر قابل تحمل می شوند. همراه با بیهوشی، احساس ترس، ناراحتی در صحبت و عدم تعادل و در نهایت انسداد مرکز تنفس مرگ فرا می رسد. اثرات این مواد به حدی زیاد است که حتی در صورت هرگونه اقدام پزشکی و نجات بیمار، اثرات دراز مدت آن پس از سالها ظاهر می شود. 

به طور خلاصه، جنگ افزارهای شیمیایی که در اوایل از ترکیبات ساده ی سمی تشکیل شده بودند، هم اکنون به علت پیشرفت علمی و صنعتی و درخواست های جدید نظامی، متحول و دگرگون گردیده اند. مواد جنگی جدید که دارای کیفیت بالایی هستند، همراه با وسایل پرتاپ کننده ی پیشرفته ضمن آنکه مکمل یکدیگرند، سبب می شوند تا کارایی و یا تأثیر مواد شیمیایی در آماج های دور دست افزایش یابد.
——————————————–
جنگ‌افزار هسته‌ای
از ویکی‌پدیا، دانشنامهٔ آزاد
فهرست مندرجات
۱ متن عنوان 
۲ انواع بمب هسته ای 
۳ سلاح اتمي 
۴ انواع بمب اتمي 
۵ پدافند هسته اي 
۶ اثرات و مراحل انفجار هسته اي 
o ۶.۱ نورانفجار 
o ۶.۲ تشعشع حرارتی 
o ۶.۳ موج انفجار 
o ۶.۴ تشعشع هسته اي 
۶.۴.۱ آلفا 
۶.۴.۲ بتا 
۶.۴.۳ گاما 
۶.۴.۴ نوترون 
o ۶.۵ پیوند به بیرون 
o ۶.۶ پانويس 
o ۶.۷ منبع 

متن عنوان
 
 
ابر قارچی بمباران اتمی ناگاساکی ژاپن در ۱۹۴۵ حدود ۱۸ کیلومتر به هوا فوران کرد.
جنگ‌افزار هسته‌ای سلاح‌هائی هستند که در آن‌ها از انرژی حاصل از شکافت یا همجوشی هسته‌ای برای تخریب و کشتار استفاده می‌شود.
این سلاح‌ها در طول تاریخ تنها ۲ بار توسط امریکا مورد استفاده قرار گرفت.
انواع بمب هسته ای
اين سر عنوانها را برای اين نوشتم كه سرچ اين صفحه راحت تر باشد لطفا آنها را پاك نكنيد.
سلاح اتمي
انواع بمب اتمي
بمب حاصل از شکافت (A-Bomb) 
بمب حاصل از همجوشی (H-Bomb) 
بمب نوترونی (N-Bomb) 
پدافند هسته اي
استفاده از سلاحهای اتمی به دليل اثرات و ويژگی های خاصی بوده كه صاير جنگ افزار ها چنين قابليتی ندارند از جمله :
۱.ايجاد خسارت های سنگين جانی و مالی . 
۲.غير قابل استفاده كردن و آلودگی محيط. 
۳.تهديد طرف مقابل و تحت فشار گذاشتن طرف مقابل برای قبول خواسته ها. 
۴.تغيير توازن قدرت درجنگ . 
۵.وسعت شعاع تخريب و خسارات هنگفت . 
۶.استفاده سريع در هر شرايع . 
۷.نفوذ اثرات تخريبی آن در تاسيسات…. 
البته با وجود اين قابليتها كشورها ودولتهای دارنده سلاح هسته ای با مشكلاتی رو به رو اند به شرح زير :
۱. مخالف اذهان عمومی جهان است 
۲. عمده تجهيزات و تاسيسات را نابود میسازد كه خود دشمن نيز ممكن است به آن نياز پيدا كند. 
۳. آلودگی شديد هسته ای كه باعث عدم استفاده از منطقه ميگردد. 
۴. عدم كنترل شعاع آلودگی كه در اثر كم بودن ممكن است آن خسارت مورد نظر وارد نشود و همچنين با زياد شدن شعاع آلودگی ممكن است به نيرو های خودی آسيب برسد. 
اثرات و مراحل انفجار هسته اي
نورانفجار
اولين نشانه يك حمله اتمی نور خيره كننده آن است كه مقداری از خورشيد درخشنده تر است و مانند فلاش عكاسی يا صاعقه است و نگاه كردن به آن حتی چند ثانيه میتواند انسان را نابينا كند 

تشعشع حرارتی
گوی آتشين تشكيل شده كه دمای مركز آن به چند ميليون درجه سانتيگراد ميرسد (حتی از سطح خورشيد هم بيشتر ميشود). 
هرچيزی را در نزديكی خود به خاكستر سفيدی تبديل ميكند وجود باد هم ميتواند به اين عمل كمك نمايد. 
موج انفجار
در همان دو الی سه ثانيه اول تشكيل ميشود و با سرعتی معادل دو برابر سرعت صوت به راه می افتد وهرچه بر سر راهش باشد پرتاب و نابود میكند . 
اجسامی كه توسط موج انفجار متلاشی شده مانند گلوله به پرواز در می آيند و آثار ناشی از آن تهديد جدی برای انسان به شمار ميرود. 

خود موج انفجار نيز بر اعصاب انسان تاثير گذاشته و باعث عدم تعادل (موقت يا دائم) ميگردد كه به اصطلاح به آن موجی شدن ميگوييم و همچنين باعث آسيب های شديد بر پرده گوش و ديافراگم قفسه سينه ميشود كه به ترتيب در اثر برخورد موج با پرده گوش و دومی دراثر باز ماندن ئهان انسان يا تنفس هنگام آمدن موج است كه عوارض آنها كری—ودومی مرگ است . 
تشعشع هسته اي
اين تشعشعات بسيار خطرناك به محض انفجار بمب در تمام نقاط پخش ميشود كه شامل چهار دسته اند: 
آلفا
اين ذره برد و قدرت نفوذ كمتری نسبت به ساير ذرات دارند. 
اين ذره توسط يك ورق كاغذ يا پارچه يا پوست انسان متوقف میشود.[۱] 
بتا
*اين ذره از ذرات آلفا قدرت نفوذ بيشتری دارند ولی دارای برد كمتری ميباشند.
*اين ذره توسط يك صفحه فلزی با ضخامت بيش از سه ميليمتر متوقف ميشود.   
[۲]
گاما
اين اشعه مانند امواج راديويی دارای برد بسيار زيادی ميباشند 
قدرت نفوذ و تخريب اين اشعه بسيارزياد است 
يك لايه ۱۵سانتيمتری بتن يا يك لايه ۲۰ سانتيمتری خاك فقط نيمی از اين اشعه را ميگيرد و همان نيمی ديگر اثرات زيانبار خود را بر جای ميگذارد. 
[۳]
نوترون
نوترون نيز مانند گاما هم بسيار زيانبار است هم دارای برد بسيار زيادی ميباشند و قدرت نفوذ و تخريب بسيار زيادی دارد با اين تفاوت كه نوترون ذره است و گاما اشعه. 
[۴]
پیوند به بیرون

پانويس
۱٫ ↑ شيمی مورتيمر 
۲٫ ↑ شيمی مورتيمر 
۳٫ ↑ شيمی مورتيمر 
۴٫ ↑ شيمی مورتيمر 
‎ 
منبع::
جنگ افزار(مجله)
سایت :ویکی پدیا 
سلاح های هسته ای

امروز، تمایز دادن این دو نوع سلاح بسیار دشوار است؛ زیرا در سلاح های پیچیده ای که امروزه ساخته می‌شود هر دو نوع بمب با هم ترکیب شده اند. مثلاً ابتدا یک بمب شکافت کوچک منفجر می‌شود تا دما و فشار مورد نیاز واکنش هم جوشی و انفجار بمب هم جوشی فراهم شود. عناصر هم جوشی هم ممکن است در هسته یک بمب شکافت استفاده شوند، چون نوترونهایی که از آنها تولید می‌شود باز می‌آفریند شکافت را بالا می‌برد.
وجه تمایز سلاح های شکافت و هم جوشی در این است که انرژی آنها از تغییرات هسته اتم به دست می‌آید. پس بهترین نام برای تمامی این سلاح های انفجاری، سلاح هسته ای یا Nuclear Weapon است. نوع دیگری از استفاده از سلاحهای اتمی هم وجود دارد که به آن بمب کثیف می‌گویند.

بمب های شکافت (Fission Bomb)
ساده ترین بمب های هسته ای بمب های شکافت خالص هستند که اساس سلاح های پیشرفته امروزی را تشکیل می‌دهند. اولین بار این بمب در آزمایش ترینتیی که نخستین دستاوردهای علمی پروژه، منهتن بود، منفجر شد.
یک بمب هسته ای شکافت، با تبدیل مداوم یک جرم زیر بحرانی یک ماده قابل شکافت به یک مجموعه فوق بحرانی و ایجاد یک واکنش زنجیره ای همراه با تولید مقداربسیار زیاد انرژی کار می‌کند. در عمل جرم به طور پیوسته و آرام و آرام به حالت بحرانی نمی رسد، بلکه از یک حالت زیر بحرانی به یک حالت بسیار فوق بحرانی تبدیل می‌شود. بدین ترتیب هر نوترون، نوترونهای جدید و زیادی تولید می‌کند و واکنش زنجیرهای با سرعت بسیار زیادی پیش می‌رود. مشکل اصلی در تولید یک بمب هسته ای شکافت بازده انفجاری خوب، این است که بتوان برای مدت کافی، اجزای بمب را کنار هم نگاه داشت تا بخش قابل توجهی از انرژی هسته ای قابل تولید آزاد شود.
تا پیش از زمان رها کردن بمب، ماده قابل شکافت را باید به صورت قطعات متعدد و جدا از هم که هر یک کمتر از جرم بحرانی هستند، نگاهداری کرد. در زمان انفجار، باید مواد قابل شکافت را به سرعت در کنار هم قرار داد. در ضمن فرآیند جمع شدن مواد، واکنش زنجیره ای آغاز می‌شود و سبب می‌شود اجزای بمب گرم شده، منبسط شوند. این انبساط مانع از فشرده شدن حداکثر مواد می‌شود ( به صرفه ترین حالت تولید انرژی در فشردگی کامل مواد قابل شکافت روی می‌دهند. ) اما فراهم کردن سیستمی که تمام این کارها را به خوبی انجام دهد اصلاً کار ساده ای نیست.
  • بازدید : 55 views
  • بدون نظر

دانلود رایگان تحقیق دفع زباله های هسته ای-خرید اینترنتی تحقیق دفع زباله های هسته ای-دانلود رایگان مقاله دفع زباله های هسته ای-تحقیق دفع زباله های هسته ای

این فایل در ۱۱صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

  • بازدید : 68 views
  • بدون نظر

دانلود رایگان فایل تحقیق سوخت-دانلود رایگان مقاله درباره سوخت-تحقیق سوخت-خرید اینترنتی فایل تحقیق سوخت-دانملود رایگان سمینار سوخت-دانلود پروژه کامل درباره سوخت

این فایل در۱۵صفحه قابل ویرایش تهیه شده است وبه موارد زیر می پردازد:
تعریف سوخت،سوخت هسته ای،چرخه سوخت هسته ای،اکتشاف واستخراج،آسیاب کردن،تبدیل،غنی سازی،ساخت میله های سوخت،و….
توضیحات کامل این موارد برای آشنایی بیشتر شما در قسمت بعد ارائه خواهد شد.

به هر ماده ای که توانایی ایجاد گرما ، در اثر سوختن یا تحول شیمیایی ، داشته باشد سوخت می گویند.سوختها را می توان به دودسته عمده طبیعی و مصنوعی تقسیم کرد . سوختهای طبیعی طی سالیان دراز در طبیعت تولید شده اند.در واقع ، این سوختها حتی بدون نیاز یه عملیات خاصی قابل استفاده هستند و به دلیل اینکه از کربن ، هیدروژن و سایر ترکیبات آنها ساخته شده اند ، یه آنها سوختهای هیدروکربنی یا سوختهای فسیلی نیز می گویند. سوختهای فسیلی از ترکیبات هیدروکربن ( ترکیباتی شامل کربن و هیدروژن ) و بقایای فسیل شده گیاهان و جانوران به وجود آمده اند.دگرگونی بقایای فسیلی ،از طریق واکنشهای بیوشیمیایی و تغییرات جغرافیایی ، سبب تولید این نوع سوختها شده است . این سوختها عبارتند از زغال سنگ ، نفت و گازطبیعی. سوختهای مصنوعی درنتیجه عملیات شیمیایی ، فیزیکی یا گرمایی بر روی سوختهای طبیعی به دست می آیند. از جمله این سوختها می توان زغال چوب ، کک، نفت سفید، گاز سوختنی تولیدی و عناثر بارورشده توسط فعل وانفعالات هسته ای را نام برد.

سوخت هسته ای

موادی که هسته آنها با نوترون بمباران می شوند و به مواد قابل شکافت هسته ای معروف هستند عبارتند از : اورانیوم ۲۳۵،اورانیوم ۲۳۳ ، و پلوتونیوم ۲۳۹ که از این سه عنصر ، فقط اورانیوم ۲۳۵ در طبیعت موجود است . پلوتونیوم ۲۳۹ و اورانیوم ۲۳۳ به ترتیب از طریق استحاله اورانیوم ۲۳۸ و توریوم ۲۳۲ تولید می شوند . دوماده اخیر ، به « مواد بارور» معروف هستند.

اورانیوم طبیعی ، پس از طی یک سلسله عملیات معدنی وتصفیه شیمیایی ، محتوی ۷۱% درصداورانیوم ۲۳۵ و مقدار بسیار کمی اورانیوم ۲۳۳ است و بقیه آن را اورانیوم ۲۳۸ تشکیل می دهد. فلز اورانیوم به سه صورت ( بسته به درجه حرارت ) ظاهر می شود ، این سه فرم به نامهای آلفا ، بتا و گاما معروف هستند. فرم آلفا تا درجه حرارت ۶۶۰ سانتی گراد، بتا از ۶۶۰ تا ۷۶۰ و گاما از ۷۶۰ درجه به بالا ظاهر می شود.

فلز اورانیوم از نظر شیمیایی بسیاراکتیو ( فعال) است. در حرارت معمولی ، هوا و آب آن را می خورند و در حرارت زیاد ، فورا” با آب ترکیب می شود . این یکی از دلایلی است که موجب می شود میله های اورانیوم را در رآکتورها، در غلاف هایی از منیزیوم یا منگنوکس قرار دهند. اورانیوم دارای خاصیت رادیواکتیویته طبیعی است ، به این معنی که از آن پرتو قابل نفوذی شبیه پرتو ایکس (x ) ساطع می شود از میان این سه دسته ، اثرات نامطلوب پرتو گاما از همه بیشتر است، اما شدت رادیو اکتیویته طبیعی اورانیوم نسبتا” کم است ، به طوری که برای عملیات معدنی تصفیه شیمیایی ساخت میله های اورانیوم و قرار دادن آنها دررآکتور؛ مشکلات بزرگی ایجاد نمی کند. کارکنان این موسسات می توانند با وسایل حفاظتی معمولی ، از قبیل دستکش ، و روشهای مخصوص تا مرحله آخر قرار دادن او رانیوم در غلاف های غیر قابل نفوذ به طور کافی حفاظت شوند.

بعد از اینکه اورانیوم در رآکتور تحت تاثیر بمباران نوترون قرار گرفت ، شدت پرتو رادیو اکتیو بالا می رود علاوه بر این ، نوترون ها که دارای انرژی زیادی هستند مخاطراتی ایجاد می کنند. از این مرحله به بعد ، هرگونه عملیات روی میله ها ی اورانیوم باید از دور و با وسایل مکانیکی ، الکتریکی و هیدرولیکی صورت می گیرد . هم چنین ، سوخت مصرف شده در رآکتور به شدت رادیواکتیویته بوده و باید با مراقبتهای مخصوص منتقل شود. اورانیوم برای ایجاد انفجار هسته ای و تولید حرارت باید مورد اصابت نوترون قرار گیرد . این نوترون می تواند از یک منبع خارجی تهیه نوترون تامین شودیا از نوترونهای آزادی که در یک حجم از اورانیوم وجود دارند استفاده شود. در یک حجم اورانیوم همیشه مقداری نوترون آزاد وجوددارد و حتی بعضی از آنها موجب انفجار هسته ای می شوند ولی نوترونهای تولید شده از جدار اورانیوم گذشته وارد هوا می شوند و در نتیجه فعل و انفعال سلسله ای ایجاد نمی کنند . از یک حجم به بالا خارج شدن بعضی از نوترون ها ی آزاد مشکل شده و موجب اصابت باهسته های اورانیوم وشروع فعل و انفعال سلسله ای می شود.طبیعی است که این حجم بحرانی (Cirtic )، به ظاهر هندسی آن نیز بستگی دارد . در رآکتورهای اتمی ، معمولا حجم رآکتور بالاتر از حجم بحرانی است و در نتیجه شروع فعل و انفعالات سلسله ای ، خود به خود و بدون تهیه منبع نوترون مجزا انجام می گیرد ، ولی در بعضی موارد ، از منبع نوترون مجزا نیز استفاده می شود. در بعضی رآکتورها اورانیوم به صورت اکسیدیاترکیبات دیگر مورد استفاده قرار می گیرد . درصد اورانیوم در این ترکیبات زیاد است    از نظر انفجارات هسته ای همان خواص اورانیوم خالص را دارد . بدین ترتیب اولا در عمل تبدیل ترکیبات فوق به اورانیوم خالص صرفه جویی شده و ثانیا، از بعضی خواص فیزیکی مطلوب آنها نیز استفاده شده است .استفاده از سوخت هسته ای برای تولید انرژی برق، با به کارگیری اولین رآکتورهای قدرت دردهه ۶۰ میلادی شروع شد وتولیدو مصرف آن به طور پیوسته رو به افزایش نهاد . در سال ۱۹۹۷ م ، ازهر شش کیلو وات ساعت انرژی برق که در جهان تولید می شد ، یک کبلو وات ساعت آن با استفاده از سوخت هسته ای ، یک کیلو وات ساعت دیگر با به کارگیری منابع آبی ، و چهار کیلو وات ساعت نیز با بهره گیری از سوخت های فسیلی ( نفت ، گاز، زغال سنگ) تامین می شد. در کشورهای اروپایی ، سهم سوخت هسته ای برای تولید انرژی برق به ۳۳% ، یعنی دوبرابر مبانگبن جهانی ، و در فرانسه به ۷۷% می رسد.تکنولوژی تولید وبهره برداری از سوخت هسته ای یکی از پیچیده ترین و پیشرفته ترین تکنولوژیهای امروزی است که از طیف گسترده ای از علوم و فنون مختلف ( مانند شیمی هسته ای ، مهندسی شیمی، مهندسی فرایند، متالوژی مواد ، متالوژی پودر ، انتقال حرارت ، حرکت شاره ها و غیره ) بهره می گیرد . کیفیت تولید و بهره برداری از سوخت هسته ای در رآکتورها، در چهار دهه گذشته همواره بهبود یافته واستفاده بهینه از این سوخت را بارعایت کامل مسایل ایمنی ممکن کرده است.

 

چر خه سوخت هسته ای

چرخه سوخت هسته ای چیست؟
اورانیومی که از زمین استخراج می‌شود، بلافاصله قابل استفاده در نیروگاههای تولید انرژی نیست. برای آنکه بتوان بیشترین بازده را از اورانیوم به دست آورد، فرآیندهای مختلفی روی سنگ معدن اورانیوم صورت می‌گیرد تا غلظت ایزوتوپ
u-235 که قابل شکافت است، افزایش یابد.
چرخه سوخت اورانیوم نسبت به سوخت های رایج دیگر، از جمله ذغال سنگ، نفت و گاز طبیعی، به مراتب پیچیده تر و متمایزتر است. چرخه سوخت اورانیوم را چرخه سوخت هسته ای نیز می‌گویند. چرخه سوخت هسته ای از دو بخش انتهای جلویی و انتهای عقبی (
front end , Back end
) تشکیل شده است. انتهای جلویی چرخه، مراحلی است که منجر به آماده سازی اورانیوم به عنوان سوخت رآکتور هسته ای می‌شود و شامل استخراج از معدن، آسیاب کردن، تبدیل، غنی سازی و تولید سوخت است.
هنگامی که اورانیوم به عنوان سوخت مصرف شد و انرژی از آن به دست می‌آمد، انتهای عقبی چرخه آغاز می‌شود تا ضایعات هسته ای به انسان و محیط زیست آسیبی نرسانند. این بخش عقبی شامل انبار داری موقتی، بازفرآوری کردن انبار نهایی است.

  • بازدید : 49 views
  • بدون نظر

این فایل در ۲۶صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

انرژی هسته ای از عمده ترین مباحث علوم و تکنولوژی هسته ای است و هم اکنون نقش عمده ای را در تأمین انرژی کشورهای مختلف خصوصا کشورهای پیشرفته دارد. اهمیت انرژی و منابع مختلف تهیه آن، در حال حاضر جزء رویکردهای اصلی دولتها قرار دارد. به عبارت بهتر، از مسائل مهم هر کشور در جهت توسعه اقتصادی و اجتماعی  بررسی ، اصلاح و استفاده بهینه از منابع موجود انرژی در آن کشور است. امروزه بحرانهای سیاسی و اقتصادی و مسائلی نظیر محدودیت ذخایر فسیلی، نگرانیهای زیست محیطی، ازدیاد جمعیت، رشد اقتصادی ، همگی مباحث جهان شمولی هستند که با گستردگی تمام فکر اندیشمندان را در یافتن راهکارهای مناسب در حل معظلات انرژی در جهان به خود مشغول داشته اند.
در حال حاضر اغلب ممالک جهان به نقش و اهمیت منابع مختلف انرژی در تأمین نیازهای حال و آینده پی برده و سرمایه گذاریها و تحقیقات وسیعی را در جهت سیاستگذاری، استراتژی و برنامه های زیربنایی و اصولی انجام می دهند. هم اکنون تدوین استراتژی که مرکب از بررسی تمامی پارامترهای تأثیر گذار در انرژی و تعیین راهکارهای مناسب جهت تمیزتر و کارا ترنمودن انرژی و الگوی بهینه مصرف آن می باشد، در رأس برنامه های زیربنایی اکثر کشورهای جهان قرار دارد. در میان حاملهای مختلف انرژی،انرژی هسته ای جایگاه ویژه ای دارد. هم اکنون بیش از ۴۳۰ نیروگاه هسته ای در جهان فعال می باشند و انرژی برخی کشورها مانند فرانسه عمدتا از برق هسته ای تأمین می شود
جمهوری اسلامی ایران بیش از سه دهه است که تحقیقات متنوعی را در زمینه های مختلف علوم و تکنولوژی هسته ای انجام داده و براساس استراتژی خود، مصمم به ایجاد نیروگاههای هسته ای به ظرفیت کل ۶۰۰۰ مگاوات تا سال ۱۴۰۰ هجری شمسی می باشد. در این زمینه، جمهوری اسلامی ایران در نشست گذشته آژانس بین المللی انرژی اتمی، تمایل خود را نسبت به همکاری تمامی کشورهای جهان جهت ایجاد این نیروگاهها و تهیه سوخت مربوطه رسما اعلام نموده است.
کاربردهای علوم و تکنولوژی هسته ای
علیرغم پیشرفت همه جانبه علوم و فنون هسته ای در طول نیم قرن گذشته، هنوز این تکنولوژی در اذهان عمومی ناشناخته مانده است. وقتی صحبت از انرژی اتمی به میان می آید، اغلب مردم ابر قارچ مانند حاصل از انفجارات اتمی و یا راکتورهای اتمی برای تولید برق را در ذهن خود مجسم می کنند و کمتر کسی را می توان یافت که بداند چگونه جنبه های دیگری از علوم هسته ای در طول نیم قرن گذشته زندگی روزمره او را دچار تحول نموده است. اما حقیقت در این است که در طول این مدت در نتیجه تلاش پیگیر پژوهشگران و مهندسین هسته ای، این تکنولوژی نقش مهمی را در ارتقاء سطح زندگی مردم، رشد صنعت و کشاورزی و ارائه خدمات پزشکی ایفاء نموده است. موارد زیر از مهمترین استفاده های صلح آمیز از علوم و تکنولوژی هسته ای می باشند:
۱- استفاده از انرژی حاصل از فرآیند شکافت هسته اورانیوم یا پلوتونیوم در راکتورهای اتمی جهت تولید برق و یا شیرین کردن آب دریاها.
۲-استفاده از رادیوایزوتوپها در پزشکی، صنعت و کشاورزی
۳- استفاده از پرتوهای ناشی از فرآیندهای هسته ای در پزشکی، صنعت و کشاورزی

برق هسته ای
از مهمترین منابع استفاده صلح آمیز از انرژی اتمی، ساخت راکتورهای هسته ای جهت تولید برق می باشد. راکتورهسته ای وسیله ای است که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام می گیرد. در طی این فرایند انرژی زیاد آزاد می گردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از ۱۵۰۰ تن زغال سنگ بدست می آید. هم اکنون در سراسر جهان، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی، پاره ای برای راندن کشتیها و زیردریائیها، برخی برای تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونه هایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار می گیرند. در راکتورهای هسته ای که برای نیروگاههای اتمی طراحی شده اند (راکتورهای قدرت)، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته می شوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته می شوند.
راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند. معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(۲ تا ۴ درصد اورانیوم ۲۳۵) به عنوان سوخت استفاده می کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک(LWR ) شناخته می شوند. راکتورهای WWER,BWR,PWR از این دسته اند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند. این راکتورها به گاز- گرافیت معروفند. راکتورهای HTGR,AGR,GCR از این نوع می باشند. راکتور PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد) LWGR(راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER,BWR فراوانترین راکتورهای قدرت در حال کار جهان می باشند.
 به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت “وستینگهاوس” و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمیPWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن ۱۹۵۴در “آبنینسک” نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال ۱۹۵۶ در انگلستان آغاز گردید. تا سال ۱۹۶۵ روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود اما طی دو دهه ۱۹۶۶ تا ۱۹۸۵ جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای ۱۹۷۲ تا ۱۹۷۶ که بطور متوسط هر سال ۳۰ نیروگاه شروع به ساخت می کردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه ۱۹۷۰ می باشد که کشورهای مختلف را برآن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته ای روی آورند. پس از دوره جهش فوق یعنی از سال ۱۹۸۶ تاکنون روند ساخت نیروگاهها به شدت کاهش یافته بطوریکه بطور متوسط سالیانه ۴ راکتور اتمی شروع به ساخت می شوند.
  • بازدید : 39 views
  • بدون نظر

این فایل در ۵۲صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

استفاده اصلي از انرژي هسته‌اي، توليد انرژي الكتريسته است. اين راهي ساده و كارآمد براي جوشاندن آب و ايجاد بخار براي راه‌اندازي توربين‌هاي مولد است. بدون راكتورهاي موجود در نيروگاه‌هاي هسته‌اي، اين نيروگاه‌ها شبيه ديگر نيروگاه‌ها زغال‌سنگي و سوختي مي‌شود. انرژي هسته‌اي بهترين كاربرد براي توليد مقياس متوسط يا بزرگي از انرژي الكتريكي به‌طور مداوم است. سوخت اينگونه ايستگاه‌ها را اوانيوم تشكيل مي‌دهد.
چرخه سوخت هسته‌اي تعدادي عمليات صنعتي است كه توليد الكتريسته را با اورانيوم در راكتورهاي هسته‌اي ممكن مي‌كند.
در ادامه برای آشنایی بیشتر شما توضیحات بیشتری درباره این فایل میدهیم
اورانيوم عنصري نسبتاً معمولي و عادي است كه در تمام دنيا يافت مي‌شود. اين عنصر به‌صورت معدني در بعضي از كشورها وجود دارد كه حتماً بايد قبل از مصرف به صورت سوخت در راكتورهاي هسته‌اي، فرآوري شود.
الكتريسته با استفاده از گرماي توليد شده در راكتورهاي هسته‌اي و با ايجاد بخار براي به‌كار انداختن توربين‌هايي كه به مولد متصل‌اند توليد مي‌شود.

سوختي كه از راكتور خارج شده، بعداز اين كه به پايان عمر مفيد خود رسيد مي‌تواند به عنوان سوختي جديد استفاده شود.

فعاليت‌هاي مختلفي كه با توليد الكتريسيته از واكنش‌هاي هسته‌اي همراهند مرتبط به چرخه‌ سوخت هسته‌اي هستند. چرخه سوختي انرژي هسته‌اي با اورانيوم آغاز مي‌شود و با انهدام پسمانده‌هاي هسته‌اي پايان مي‌يابد. دوبار عمل‌آوري سوخت‌هاي خرج شده به مرحله‌هاي چرخه سوخت هسته‌اي شكلي صحيح مي‌دهد.

اورانيوم
اورانيوم فلزي راديواكتيو و پرتوزاست كه در سراسر پوسته سخت زمين موجود است. اين فلز حدوداً ۵۰۰ بار از طلا فراوان‌تر و به اندازه قوطي حلبي معمولي و عادي است. اورانيوم اكنون به اندازه‌اي در صخره‌ها و خاك و زمين وجود دارد كه در آب رودخانه‌ها، درياها و اقيانوس‌ها موجود است. براي مثال اين فلز با غلظتي در حدود ۴ قسمت در هر ميليون (ppm4) در گرانيت وجود دارد كه ۶۰ درصد از كره زمين را شامل مي‌شود، در كودها با غلظتي بالغ بر ppm400 و در ته‌مانده زغال‌سنگ با غلظتي بيش از ppm100 موجود است. اكثر راديو اكتيويته مربوط به اورانيوم در طبيعت در حقيقت ناشي از معدن‌هاي ديگري است كه با عمليات راديواكتيو به وجود آمده‌اند و در هنگام استخراج از معدن و آسياب كردن به جا مانده‌اند.
چند منطقه در سراسر دنيا وجود دارد كه غلظت اورانيوم موجود در آنها به قدر كافي است كه استخراج آن براي استفاده از نظر اقتصادي به صرفه و امكان‌پذير است. اين نوع مواد غليظ، سنگ معدن يا كانه ناميده مي‌شوند.

استخراج اورانيوم

هر دو نوع حفاري و تكنيك‌هاي موقعيتي براي كشف كردن اورانيوم به كار مي‌روند، حفاري ممكن است به صورت زيرزميني يا چال‌هاي باز و روي زمين انجام شود.

در كل، حفاري‌هاي روزميني در جاهايي استفاده مي‌شود كه ذخيره معدني نزديك به سطح زمين و حفاري‌هاي زيرزميني براي ذخيره‌هاي معدني عميق‌تر به كار مي‌رود. به‌طور نمونه براي حفاري روزميني بيشتر از ۱۲۰ متر عمق، نياز به گودال‌هاي بزرگي بر سطح زمين است؛ اندازه گودال‌ها بايد بزرگتر از اندازه ذخيره معدني باشد تا زماني كه ديواره‌هاي گودال محكم شوند تا مانع ريزش آنها شود. در نتيجه، تعداد موادي كه بايد به بيرون از معدن انتقال داده شود تا به كانه دسترسي پيدا كند زياد است.

حفاري‌هاي زيرزميني داراي خرابي و اخلال‌هاي كمتري در سطح زمين هستند و تعداد موادي كه بايد براي دسترسي به سنگ معدن يا كانه به بيرون از معدن انتقال داده شوند به‌طور قابل ملاحظه‌اي كمتر از حفاري نوع روزميني است.

مقدار زيادي از اورانيوم جهاني از (ISL) (In Sitaleding) مي‌آيد. جايي كه آب‌هاي اكسيژنه زيرزميني در معدن‌هاي كانه‌اي پرمنفذ به گردش مي‌افتند تا اورانيوم موجود در معدن را در خود حل كنند و آن را به سطح زمين آورند. (ISL) شايد با اسيد رقيق يا با محلول‌هاي قليايي همراه باشد تا اورانيوم را محلول نگهدارد، سپس اورانيوم در كارخانه‌هاي آسياب‌سازي اورانيوم، از محلول خود جدا مي‌شود.
در نتيجه انتخاب روش حفاري براي ته‌نشين كردن اورانيوم بستگي به جنس ديواره معدن كانه سنگ، امنيت و ملاحظات اقتصادي دارد.
در غالب معدن‌هاي زيرزميني اورانيوم، پيشگيري‌هاي مخصوصي كه شامل افزايش تهويه هوا مي‌شود، لازم است تا از پرتوافشاني جلوگيري شود.

آسياب كردن اورانيوم

محل آسياب كردن معمولاً به معدن استخراج اورانيوم نزديك است. بيشتر امكانات استخراجي شامل يك آسياب مي‌شود. هرچه جايي كه معدن‌ها قرار دارند به هم نزديك‌تر باشند يك آسياب مي‌تواند عمل آسياب‌سازي چند معدن را انجام دهد. عمل آسياب‌سازي اكسيد اورانيوم غليظي توليد مي‌كند كه از آسياب حمل مي‌شود. گاهي اوقات به اين اكسيدها كيك زرد مي‌گويند كه شامل ۸۰ درصد اورانيوم مي‌باشد. سنگ معدن اصل شايد داراي چيزي در حدود ۱/۰ درصد اورانيوم باشد.
در يك آسياب، اورانيوم با عمل سنگ‌شويي از سنگ‌هاي معدني خرد شده جدا مي‌شود كه يا با اسيد قوي و يا با محلول قليايي قوي حل مي‌شود و به صورت محلول در مي‌آيد. سپس اورانيوم با ته‌نشين كردن از محلول جدا مي‌شود و بعداز خشك كردن و معمولاً حرارت دادن به صورت اشباع شده و غليظ در استوانه‌هاي ۲۰۰ ليتري بسته‌بندي مي‌شود.
باقيمانده سنگ معدن كه بيشتر شامل مواد پرتوزا و سنگ معدن مي‌شود در محلي معين به دور از محيط معدن در امكانات مهندسي نگهداري مي‌شود. (معمولاً در گودال‌هايي روي زمين).
پس‌مانده‌هاي داراي مواد راديواكتيو عمري طولاني دارند و غلظت آنها كم خاصيتي سمي دارند. هرچند مقدار كلي عناصر پرتوزا كمتر از سنگ معدن اصلي است و نيمه عمر آنها كوتاه خواهد بود اما اين مواد بايد از محيط زيست دور بمانند.

تبديل و تغيير

محلول آسياب شده اورانيوم مستقيماً قابل استفاده به‌عنوان سوخت در راكتورهاي هسته‌اي نيست. پردازش اضافي به غني‌سازي اورانيوم مربوط است كه براي تمام راكتورها لازم است.
اين عمل اورانيوم را به نوع گازي تبديل مي‌كند و راه به‌دست آوردن آن تبديل كردن به هگزا فلوريد (Hexa Fluoride) است كه در دماي نسبتاً پايين گاز است.
در وسيله‌اي تبديل‌گر، اورانيوم به اورانيوم دي‌اكسيد تبديل مي‌شود كه در راكتورهايي كه نياز به اورانيوم غني شده ندارند استفاده مي‌شود.
بيشتر آنها بعداز آن كه به هگزافلوريد تبديل شدند براي غني‌سازي در كارخانه آماده هستند و در كانتينرهايي كه از جنس فلز مقاوم و محكم است حمل مي‌شوند. خطر اصلي اين طبقه از چرخه سوختي اثر هيدروژن فلوريد (Hydrogen Fluoride) است.





غنی سازی اورانيم

سنگ معدن اورانيوم موجود در طبيعت از دو ايزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانيوم ۲۳۸ به مقدار ۳/۹۹ درصد تشكيل شده است. سنگ معدن را ابتدا در اسيد حل كرده و بعد از تخليص فلز، اورانيوم را به صورت تركيب با اتم فلئور (F) و به صورت مولكول اورانيوم هكزا فلورايد UF6 تبديل مي كنند كه به حالت گازي است. سرعت متوسط مولكول هاي گازي با جرم مولكولي گاز نسبت عكس دارد اين پديده را گراهان در سال ۱۸۶۴ كشف كرد. از اين پديده كه به نام ديفوزيون گازي مشهور است براي غني سازي اورانيوم استفاده مي كنند.در عمل اورانيوم هكزا فلورايد طبيعي گازي شكل را از ستون هايي كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور مي دهند. منافذ موجود در جسم متخلخل بايد قدري بيشتر از شعاع اتمي يعني در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتيمتر) باشد. ضريب جداسازي متناسب با اختلاف جرم مولكول ها است.روش غني سازي اورانيوم تقريباً مطابق همين اصولي است كه در اينجا گفته شد. با وجود اين مي توان به خوبي حدس زد كه پرخرج ترين مرحله تهيه سوخت اتمي همين مرحله غني سازي ايزوتوپ ها است زيرا از هر هزاران كيلو سنگ معدن اورانيوم ۱۴۰ كيلوگرم اورانيوم طبيعي به دست مي آيد كه فقط يك كيلوگرم اورانيوم ۲۳۵ خالص در آن وجود دارد. براي تهيه و تغليظ اورانيوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پي درپي لازم است تا نسبت ايزوتوپ ها تا از برخي به برج ديگر به مقدار ۰۱/۰ درصد تغيير پيدا كند. در نهايت موقعي كه نسبت اورانيوم ۲۳۵ به اورانيوم ۲۳۸ به ۵ درصد رسيد بايد براي تخليص كامل از سانتريفوژهاي بسيار قوي استفاده نمود. براي ساختن نيروگاه اتمي، اورانيوم طبيعي و يا اورانيوم غني شده بين ۱ تا ۵ درصد كافي است. ولي براي تهيه بمب اتمي حداقل ۵ تا ۶ كيلوگرم اورانيوم ۲۳۵ صددرصد خالص نياز است. عملا در صنايع نظامي از اين روش استفاده نمي شود و بمب هاي اتمي را از پلوتونيوم ۲۳۹ كه سنتز و تخليص شيميايي آن بسيار ساده تر است تهيه مي كنند. عنصر اخير را در نيروگاه هاي بسيار قوي مي سازند كه تعداد نوترون هاي موجود در آنها از صدها هزار ميليارد نوترون در ثانيه در سانتيمتر مربع تجاوز مي كند. عملاً كليه بمب هاي اتمي موجود در زراد خانه هاي جهان از اين عنصر درست مي شود.روش ساخت اين عنصر در داخل نيروگاه هاي اتمي به صورت زير است: ايزوتوپ هاي اورانيوم ۲۳۸ شكست پذير نيستند ولي جاذب نوترون كم انرژي (نوترون حرارتي هستند. تعدادي از نوترون هاي حاصل از شكست اورانيوم ۲۳۵ را جذب مي كنند و تبديل به اورانيوم ۲۳۹ مي شوند. اين ايزوتوپ از اورانيوم بسيار ناپايدار است و در كمتر از ده ساعت تمام اتم هاي به وجود آمده تخريب مي شوند. در درون هسته پايدار اورانيوم ۲۳۹ يكي از نوترون ها خودبه خود به پروتون و يك الكترون تبديل مي شود.بنابراين تعداد پروتون ها يكي اضافه شده و عنصر جديد را كه ۹۳ پروتون دارد نپتونيم مي نامند كه اين عنصر نيز ناپايدار است و يكي از نوترون هاي آن خود به خود به پروتون تبديل مي شود و در نتيجه به تعداد پروتون ها يكي اضافه شده و عنصر جديد كه ۹۴ پروتون دارد را پلوتونيم مي نامند. اين تجربه طي چندين روز انجام مي گيرد.
تاريخچه بمب اتم
هانري بكرل نخستين كسي بود كه متوجه پرتودهي عجيب سنگ معدن اورانيم گرديدبس ازان در سال ۱۹۰۹ ميلادي ارنست رادرفوردهسته اتم را كشف كردوي همچنين نشان دادكه پرتوهاي راديواكتيودر ميدان مغناطيسي به سه دسته تقيسيم مي شود( پرتوهاي الفا وبتا وگاما)بعدها دانشمندان دريافتند كه منشاء اين پرتوها درون هسته اتم اورانيم مي باشد. 

در سال ۱۹۳۸ با انجام ازمايشاتي توسط دو دانشمند ا لماني بنامهاي ا توها ن و فريتس شتراسمن فيزيك هسته اي پاي به مرحله تازه اي نهاد اين فيزيكدانان با بمباران هسته اتم اورانيم بوسيله نوترونها به عناصر راديواكتيوي دست يافتندكه جرم اتمي كوچكتري نسبت به اورانيم داشت او براي توصيف علت ايجاد اين عناصرليزه ميتنرو اتو فريش پديده شكافت هسته رادر اورانيم تو ضيح دادندودر اينجا بود كه نا قوس شوم اختراع بمب اتمي به صدا در امد. 

U235 + n -> fission + 2 or 3 n + 200 MeV 

زيرا همانطور كه در شكل فوق مي بينيد هر فروپاشي هسته اورانيم۰ ميتوانست تا ۲۰۰ مگاولت انرژي ازاد كند وبديهي بود اگر هسته هاي بيشتري فرو پاشيده مي شد انرژي فراواني حاصل مي گرديد. 

بعدها فيزيكدانان ديگري نيز در اين محدوده به تحقيق مي پرداختند يكي ازانان انريكو فرمي بود( ۱۹۵۴ – ۱۹۰۱) كه بخاطر تحقيقاتش در سال ۱۹۳۸ موفق به دريافت جايزه نوبل گرديد. 

در سال ۱۹۳۹ يعني قبل از شروع جنگ جهاني دوم در بين فيزيكدانان اين بيم وجود داشت كه المانيهابه كمك فيزيكدانان نابغه اي مانند هايزنبرگ ودستيارانش بتوانند با استفاده از دانش شكافت هسته اي بمب اتمي بسازندبه همين دليل از البرت انيشتين خواستند كه نامه اي به فرانكلين روزولت رئيس جمهوروقت امريكا بنويسددر ان نامه تاريخي از امكان ساخت بمبي صحبت شد كه هر گز هايزنبرگ ان را نساخت. 
چنين شدكه دولتمردان امريكا براي پيشدستي برالمان پروژه مانهتن را براه انداختندو از انريكو فرمي دعوت به عمل اوردند تا مقدمات ساخت بمب اتمي را فراهم سازد سه سال بعددر دوم دسامبر ۱۹۴۲ در ساعت ۳ بعد از ظهر نخستين راكتور اتمي دنيا در دانشگاه شيكاگو امريكا ساخته شد. 
سپس در ۱۶ ژوئيه ۱۹۴۵ نخستين ازمايش بمب اتمي در صحراي الامو گرودو نيو مكزيكو انجام شد. 
سه هفته بعد هيروشيمادرساعت ۸:۱۵ صبح در تاريخ ۶ اگوست ۱۹۴۵ بوسيله بمب اورانيمي بمباران گردييد و ناكازاكي در ۹ اگوست سال ۱۹۴۵ در ساعت حدود ۱۱:۱۵ بوسيله بمب پلوتونيمي بمباران شدند كه طي ان بمبارانها صدها هزار نفر فورا جان باختند. 
انريكو فرمي (صف جلو نفر اول سمت چپ) و همكارانش در شيكاگو پس از ساخت نخستين راكتور هسته اي جهان به اميد انكه از راكتور هسته اي تنها در اهداف صلح اميز استفاده شود و دنيا عاري از سلاحهاي اتمي گردد 
  • بازدید : 46 views
  • بدون نظر

این فایل قابل ویرایش می باشد ودر موارد زیر تهیه شده است:

در شرايط كنوني، تلاش در جهت خود كفايي و رفع وابستگي هاي تكنولوژي كشورمان، يكي از مبرمترين وظايف آحاد ملت ايران است و هر كس بنا به موقعيت خويش بايستي در اين راستا گام بردارد. يكي از صنايع كشورمان كه پيشرفت ديگر صنايع در گرو پيشرفت و توسعه آن است صنعت برق مي باشد. نيروگاههاي موجود توليد برق، از تكنولوژي بسيار بالايي برخوردارند، بطوريكه در حال حاضر طراحي و ساخت آنها در انحصار چند كشور خاص مي باشد.  
طبق برآوردهايي كه دانشمندان نموده اند، از ابتداي خلقت تا سال ۱۸۵۲ ميلادي، بشرمعادل ۱۰۱۵*۲/۱ كيلو وات ساعت و در فاصله ۱۸۵۲ تا ۱۹۵۲ نيز معادل ۱۰۱۵*۲/۱ كيلو وات ساعت انرژي مصرف نموده است. 
پيش بيني مي شود كه در فاصله ۱۹۵۲ تا ۲۰۵۲ مصرف انرژي بشر به ۱۰۱۵*۳۰ تا ۱۰۱۵*۱۲۰ كيلو وات ساعت برسد. امروزه بين تقاضاي انرژي و انرژي هاي در دسترس و قابل مهار هماهنگي وجود ندارد ودنياي امروز با اين بحران بزرگ روبروست. آنچه مسلم استمنابع شناخته شده مورد استفاده بشر (نظير ذغالسنگ، نفت، گاز و…) در صورتيكه كاملاً و صد درصد نيز قابل مهار و استخراج باشند، نمي توانند نيازهاي آتي بشر باشند و ديري نخواهد پاييد كه اين منابع نيز به اتمام خواهند رسيد. 
از سوي ديگر استفاده از اين گونه انرژي ها با مشكلاتي توأم مي باشد؛ مثلاً در مورد سوخت هاي هسته أي، امكان تبديل آنها محدود بوده و همچنين استفاده از آنها تكنولوژي پيشرفته أي لازم دارد، بعلاوه از بين بردن فضولات آن نيز مشكلاتي ايجاد مي كند 
در مورد سوخت هاي فسيلي نيز استفاده مداوم از هر يك از آنها در دراز مدت ضمن داشتن مخاطره هاي محيط زيست هزينه هاي اقتصادي فزاينده أي به دنبال دارد. 
منابع شناخته شده انرژي عبارتند از: 
 1- سوخت هاي فسيلي ۲- چوب و…     3- مواد غذايي ۴- جريان هاي آبهاي سطحي ۵- باد               6- امواج دريا ۷- جزر و مد      8- حرارت زير پوسته زمين (ژئوترمال)                       9-حرارت آب سطح دريا ۱۰- واكنش هاي هسته أي                                 11- انرژي خورشيدي 
كه به بررسي انرژي خورشيدي مي پردازيم: 
انرژي خورشيد: 
منشأ بسياري از انرژي ها، انرژي خورشيد مي باشد. 
امروزه بيش از % ۹/۹۹ از مجموع انرژي هايي كه به زمين منتقل مي گردند از خورشيد منشأ مي گيرد كه مقدار آن ۱۰۱۵*۸/۱ ترا وات است ( ۱۰۱۲ = Tera) ، انرژي حاصل از تابش خروشيد كه در هر روز به زمين مي رسد ۱۰۰۰۰۰ برابر مقدرا انرژي توليد شده توسط كليه نيروگاههاي جهان است. بنابراين با توجه به تابش خورشيد، كمبود بالقوه انرژي در جهان وجود ندارد و انرژي خورشيد با مقداري معادل ۲۰۰۰۰ برابر مصرف كنوني بشر، به نظر مي رسد كه منبع مناسبي براي تأمين احتياجات او باشد، بخصوص اينكه استفاه از آن هيچگونه آلودگي محيطي و حتي آلودگي حرارت بوجود نمي آورد. 
كاربرد انرژي خورشيدي به عنوان يك منبع انرژي براي مصارف بزرگ از اميدهاي آينده است. اشكال بزرگ در كاربرد انرژي خورشيدي، متمركز نبودن، تناوبي بودن و ثابت نبودن مقدار تشعشع مي باشد، كه اگر بتوانيم وسيله أي جهت متمركز كردن آن بسازيم، بطوريكه نوسانات آن تأثير زيادي بر روي آن نگذارد به يك منبع انرژي بسيار بزرگ دست يافته ايم كه تا قرن ها مي توند تأ مين كننده نياز انرژي بشر باشد. با توجه به وضع انرژي در جهان و رشد جمعيت و مصرف در جهان، اگر به طور هوشمندانه رفتار كنيم خواهيم ديد كه خورشيد تنها منبع انرژي است كه انرژي آن به وفور و به صورت رايگان و در همه ادوار در اختيار مي باشد. بعلاوه اينكه در تبديل انرژي خورشيد مسائلي نظير آلوده كردن محيط زيست وجود ندارد. 
همانطور كه قبلا ذكر شد، انرژي خورشيدي كه درزمين مي تواند مورد استفاده قرار گيرد، حدود بيست هزار برابر كل انرژي مورد مصرف فعلي بشر مي باشد، اگر راندمان تبديل انرژي خورشيد به انرژي مورد نياز بشر را تنها % ۱ در نظر بگيريم، % ۵/۰ سطح كره زمين براي تقاضاي كل انرژي بشر كافي خواهد بود. 
بر طبق گزارش ERDA ( اداره كل تحقيقات و توسعه انرژي )   كل انرژي مورد نياز آمريكا در سال ۲۰۲۰ از انرژي خورشيد تأمين خواهد شد. 
پس در مي يابيم كه استفاده از انرژي خورشيد رشد چشمگيري خواهد داشت و در آينده بشر ناچار است كه بيشتر نياز خود را از انرژي خورشيد تأمين كند، بطوريكه تا سال ۲۰۷۵ مقدرا % ۵۰ تا % ۷۵ نياز كل بشر از انرژي خورشيد تأمين خواهد شد. 
با توجه به موقعيت جغرافيايي كشورمان، در مي يابيم كه ايران با تقريباً ۳۶۰۰ ساعت تابش خورشيد در سال، يكي از غني ترين ممالك در زمينه انرژي خورشيدي مي باشد و مي تواند ما را در بكارگيري اين انرژي مخصوصاً در توليد برق ياري نمايد. 
انواع كلكتورهاي خورشيدي 
الف- كلكتورهاي مسطح خورشيدي 
ب- كلكتورهاي متمركز كننده 
ب-۱- متمركز كننده خطي 
ب-۲- متمركز كننده نقطه أي 
    ب-۲-۱- متمركز كننده هاي بشقابي 
                 ب-۲-۲- متمركز كننده هاي با دريافت كننده مركزي 
كاربردها: 
الف- اين كلكتورها در اين كاربرد در دماهاي پايين بوده و بيشتر جهت مصارف خانگي نظير سيستم تهويه مطبوع و تهيه آب گرم بكار مي رود. 
ب- اين كلكتورها داراي كاربرد در دماهاي بالا بوده و به طور كلي كلكتورهايي كه شدت حرارتي رسيده به سطح گيرنده آنها بيشتر از شدت شار حرارتي رسيده به دهانه آنها باشد، متمركز كننده گويند. 
هدف از يك متمركز كننده عبارتست از متمركز كردن پرتوهاي خورشيد از يك سطح بزرگتر به روي يك سطح كوچكتر كه در نتيجه آن گيرنده گرم داراي تلفات حرارتي كمتر مي شود. 
عمل تمركز به دو طريق انجام مي شود، يكي توسط سطوح بازتاب دهنده (آينه) و ديگري توسط سطوح انكسار دهنده پرتوهاي خورشيدي ( عدسي)، بطوريكه پرتوا را روي گيرنده  متمركز مي نمايند. 
ب-۱- در اين نوع از متمركز كننده ها، پرتوهاي خورشيدي روي يك خط متمركز مي شود كه اين بوسيله عدسي يا آينه صورت مي گيرد. در نوع عدسي آن پرتوهاي خورشيد پس از عبور از عدسي شكسته شده و روي يك گيرنده خطي متمركز مي گردد ولي در نوع آينه أي كه مورد استفاده بيشتري دارد و به متمركز كننده هاي شلجمي باز (Parabolid Concentrator) معروف است، اين كلكتورها تشكيل شده اند از يك يا چند رديف از آينه هاي نيم استوانه كه پرتوهاي رسيده به آنها را در مركز كانوني خود متمركز مي كنند و در مركز اين نيم استوانه هاي منعكس كننده يك مسير لوله سرتاسري قرار دارد كه وظيفه جذب كردن انرژي حرارتي متمركز شده روي آنرا بر عهده دارد و اين انرژي جذب شده را به سيال داخل لوله منتقل مي نمايد. جهت انجام عدم انتقال حرارت از اين لوله به محيط اطراف،اين لوله ها را توسط يك لوله شيشه أي ( كه داراي قطر بيشتري از قطر لوله است) احاطه مي نمايند و در فضاي خالي بين لوله و شيشه خلأ ايجاد مي كنند كه با اين عمل انتقال حرارت، منتقل شده از لوله به محيط را از طريق جابجايي (Convection) و هدايت ( Cunductivity) به حداقل مقدرا خود مي رسانند. در مورد انتقال حرارت تشعشعي از لوله به محيط بايد گفت در هنگام تابش خورشيد، پرتوهاي متمركز شده توسط آينه ها، چون داراي طول موج كمي هستند به راحتي از شيشه محافظ عبور كرده و به لوله مي رسند، ولي پرتوهاي با تابش از روي لوله چون داراي طول موج بيشتري هستند، از داخل محفظه شيشه أي عبور نمي كنند و تحت باز تابش كلي دوباره به لوله مي تابند. 
سطح گيرنده پرتوهاي خورشيد را معمولاً از لوله هاي Steel با پوشش مخصوص (سرميت) مي سازند و گيرنده نسبت به سطح منعكس كننده ثابت بوده و همراه آن مي چرخد. 
ب-۲- در اين نوع از متمركز كننده ها، پرتوهاي خورشيد روي يك نقطه متمركز مي شوند. 
ب-۲-۱- Point – Focus dish concentrators 
اين كلكتورها به شكل يك عرقچين از يك كره مي باشند و به دو نوع يافت مي شوند: 
در نوع اول كه كاربرد بيشتري دارد سطح داخلي آنها باموادي با ضريب انعكاس بالا پوشيده شده است. سطح دريافت كننده پرتوهاي خورشيد در اين كلكتورها مي توند بصورت يكپارچه طراحي و ساخته شود و يا مي توند از تعبيه يكسري آينه هاي تخت كوچك در رويه داخلي يك سطح بشقابي شكل، تشكيل شده باشد كه در مجموع يك سطح انعكاسي بشقابي را تشكيل مي دهد. 
پرتوهاي موازي رسيده از خورشيد ( چون خروشيد به اندازه كافي از زمين دوراست و مي توان پرتوهاي ريده از آن را بصورت مواز در نظر گرفت) توسط سطح انعكاس دهنده در مركز بشقاب تابيده مي شود كه در اين مكان سطح جذب كننده انرژي قرار دارد ( دراين سطح مي تواند يك موتور استرلينگ، جهت توليد انرژي الكتريكي قرار گيرد). 
دراين كلكتورها نيز جهت بالا بردن راندمان و داشتن يك دماي ثابت در سطح جذب كننده انرژي، از يك سيستم ردياب خورشيدي استفاده مي شود. 
ب-۲-۲- Central – Receive 
يكي از مسائل عمده در رابطه با پخش متمركز كننده هاي خطي در يك محوطه بزرگ آن است كه براي انتقال سيال از محوطه تبديل كننده انرژي گرمايي، به شبكه لوله كش وسيعي نياز است كه أين امر باعث افزايش هزينه وتلفات حرارتي مي شود و علاوه بر آن چون سيال داخل لوله در درجه حرارت بسيار بالا منتقل مي شود، امكان نشتي از اتصالات، بالا مي رود. بهترين راه حل در مورد پروژه هايي كه به قدرت زياد نياز دارند، آن است كه به جاي سيستم لوله كشي در محوطه از يك سيستم گيرنده مركزي استفاده مي شود. كلكتوراي سيستم گيرنده مركزي از يك سري آينه هاي تخت كه جهت آنها را مي توان تنظيم نمود، تشكيل شده است. هر آينه، تشعشعات منعكس شده خود را به گيرنده أي كه در بالاي برج در وسط ميدان آينه ها قرار دارد، منعكس مي كند. هر يك از اين آينه هاي تخت را يك هيليوستات (Heliostat) مي نامند. 
در طريقه نصب هيليوستات ها بايد دقت نمود كه اندازه ضريب سايه و ضريب انسداد پرتوها، كمترين مقدار خود را داشته باشند كه اغلب به اين منظور هيليوستاتها را به صورت مثليث، دور تا دو دريافت كننده مركزي نصب مي نمايند. 
هيليوستات ها به يك سيستم هدايت كامپيوتري جهت رديابي خورشيد در طول روز و فصول مختلف سال مجهز مي شوند. صحت عملكرد اين دستگاه مرتباً توسط بازرسي موقعيت تصوير منعكس بر روي برج كنترل مي شود. 
در طراحي محوطه مورد نظر عوامل زير بايد در نظر گرفته شود: 
الف- موقعيت و ارتفاع برج 
ب- شكل محوطه 
ج- پراكندگي هيليوستاتها در محوطه 
بطوريكه هر چه ارتفاع برج بلند باشد، آينه  ها افقي تر قرار گرفته و در نتيجه تلفات، كمتر مي گردد و همچنين  در يك محوطه معين، مي توان از رديف هاي بيشتري از هيليوستاتها، استفاده كرد. ولي از طرف ديگر، هزينه ساخت نيز با افزايش ارتفاع برج، به شدت بالا مي رود. 
در دپارتمان انرژي آمريكا، براي يك نيروگاه خورشيدي آزمايش ۱۵ مگاواتي، برجي به ارتفاع ۱۰۱ متر و براي يك نيروگاه ۵ مگاواتي، برجي به ارتفاع ۶۱ متر در نظر گرفته است. 
چون در اين نوع گردآورنده ها با نسبت تمركز بال و نيز درجه حرارت بالايي از سيال عامل مواجه هستيم، لذا مشكل عمده آنها، اين است كه بادي جريان سيال را در داخل دريافت كننده مركزي طوري نگه داشت كه از گرم شدن موضعي و ايجاد تنش هاي حرارتي در سطح آن جلوگيري به عمل آيد. 
تاريخچه ساخت نيروگاه هاي خورشيدي 
        اولين نيروگاه بخار خورشيدي در سال ۱۹۶۵ در نزديكي ژنو ساخت شد، كه از نوع دريافت كننده مركزي بود. ميدان آينه ها از ۱۲۱ دستگاه آينه مدور شلجمي با قطر cm 58 و با سطح كلي ۲m 30 روي ردياب مكانيكي در محوطه أي به ابعاد m7 در m7 بناگرديد. ارتفاع دريافت كننده مركزي از ميدان آينه ها m 3 بود. 
براي بالا بردن ضريب جذب انرژي خورشيدي سطح خارجي لوله را به رنگ سياه مينا كرده و قسمتي از آنرا به شكل مارپيچ و قسمت ديگر را به شكل حلزوني فرم دادند. 
  • بازدید : 48 views
  • بدون نظر

این فایل در ۴صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

در مواد پرتوزا یا رادیو اکتیو فرایند پرتوزایی رخ می‌دهد.
پرتوزایی (رادیواکتیویته) به فرآیندی گفته می‌شود که به وسیله آن هسته‌های ناپایدار اتمی دچار واپاشی هسته‌ای می‌شوند. چنین فرایندی معمولاً یک پرتو یونساز با مقدار بالایی انرژی (کارمایه) پدید می‌‌آورد.
 در ادامه برای آشنایی بیشتر شما توضیحات مفصلی می دهیم
گاهی این انرژی را می‌توان به صورت نیروی هسته‌ای مهار کرد یا می‌تواند به‌وسیله آلودگی پرتوزایی در زیستبوم رها شود که بسیار مخاطره آمیز خواهد بود.
هسته هایی که ترکیب نوترونها و پروتونهایشان پایدار نیست دست خوش واپاشی می شوند. این گونه هسته ها به طور ذاتی ناپایدار بوده و با گذشت زمان تغییر نموده و به هسته های جدیدی تبدیل می شوند. به این فرآیند شکافت هسته‌ای می‌گویند که ضمن تبدیل به هسته یا هسته‌هایی کوچک تر و پایدارتر پرتوهای پرانرژی به اطراف پراکنده می‌شود. چنین هسته‌ای را پرتوزا یا رادیواکتیو می‌گویند. ناپایداری هسته می تواند به دلیل فزونی نوترون ها، پروتون ها و یا هر دو باشد.
ماده پرتوزا چيست؟ 
ماده پرتوزا ماده اي است كه طي يكسري فعل و انفعالات خاص در هسته ي اتم هاي خود، پرتوها يا تابش هاي خاصي را گسيل مي كند، همه مواد طبيعي يا مصنوعي قابليت پرتوزايي ندارند و اين قابليت فقط در موادي مشاهده مي شود كه هسته اي ناپايدار دارند و براي تبديل شدن به يك تركيب پايدار از خود پرتوهايي را گسيل مي كنند. 
تابش هاي هسته اي به طور كلي به سه دسته ي پرتوهاي آلفا، بتا و گاما تقسيم مي گردند. هر ماده ي راديواكتيو پرتوهاي مشخصي را گسيل مي كند، به طور مثال: هسته اتم هاي راديوكربن و راديو استرانسيوم پرتو بتا گسيل مي كنند، هسته هاي راديوكبالت پرتوي بتا و پرتوي گاما تشعشع مي كنند و هسته هاي راديوم و اورانيوم پرتو آلفا و پرتوي گاما گسيل مي كنند، بنابر اين مي توان نتيجه گرفت كه هر ماده اي قابليت پرتوزايي ندارد و موادي كه قابليت پرتوزايي دارند، از بين پرتوهاي آلفا، بتا و گاما فقط تعداد خاص و مشخصي را گسيل مي كنند و همانطور كه در مثال هاي گذشته اشاره شد،  به طور مثال، هسته هاي راديوكبالت پرتوهاي بتا ساطع مي كنند و اين هسته ها قابليت صادركردن پرتوهاي آلفا و گاما را ندارند و در گسيل تابش هاي هسته اي محدود مي باشند. 
مواد راديو اكتيو شامل دو دسته هستند، ا- ماده پرتوزاي طبيعي و ۲- ماده پرتوزاي مصنوعي 
ماده پرتوزاي طبيعي آن دسته از مواد پرتوزا است كه در طبيعت به صورت ذاتي وجود دارند و انسان در به وجود آمدن آن ها هيچ نقشي ندارد. 
و ماده پرتوزاي مصنوعي آن دسته از مواد پرتوزا را شامل مي شود كه ساخته دست انسان هستند و براي توليد آن ها، انساني تلاش كرده است. 
اين نوع دسته بندي در برخي كتب جزو قوانين سدي بيان شده است(مانند كتاب شيمي عمومي تاليف غلامرضا قاضي مقدم، توضيحات بيش تر در فسمت منابع) اما در برخي ديگر به صورت مجزا آمده است. 
پرتوهاي آلفا، بتا و گاما داراي جنس، بارالكتريكي، قدرت نفوذ و انرژي متفاوتي هستند و منشا و مبدا هركدام نيز ممكن است متفاوت باشد. 
در واكنش هاي هسته اي ماده اي كه پرتو گسيل مي كند را ماده مادر يا ماده اوليه مي نامند و فرآورده يا آن ماده اي كه پس از واپاشي بر جاي مي ماند را ماده دختر مي نامند. 
نيمه عمر مواد راديواكتيو، يك عنصر، مدت زماني است كه طول مي كشد تا يك ماده پرتوزا نيمي از قدرت خود را از دست بدهد، به طور مثال نيمه عمر كربن-۱۴ حدود ۵۶۰۰ سال مي باشد يا اورانيم ۲۳۸ داراي نيمه عمر ۵ ميليارد سال است، يعني ۵ ميليارد سال طول مي كشد تا اورانيوم ۲۳۸ نيمي از خاصيت راديواكتيويته خود را از دست دهد، پس بنابراين يك عنصر اورانيوم ۲۳۸ حدود ۱۰ ميليار سال طول مي كشد تا به طور كلي خاصيت راديواكتيويته خود را از دست دهد. 
از آنجايي كه مواد پرتوزا قابليت نفوذ در بافت هاي زنده را نيز دارند، بنابر اين ميزان تابش هاي هسته اي اطراف ما همواره مي بايست آزمايش و بررسي شوند كه اين كار(اندازه گيري ميزان پرتوهاي الفا، بتا و گاما در اطراف زندگي) توسط دستگاهي به نام گايگر-مولر اندازه گيري مي شود كه اين نام از نام سازندگانش اقتباس شده است. 
  ماهيت پرتوهاي آلفا، بتا و گاما 
هر سه نوع تابش هسته اي داراي خصوصيات متفاوتي نسبت به يكديگر هستند و مشخصه اي ويژه خود دارند كه برخي مشخصات بارز آنها را پي ميگيريم: 
در مقايسه ي قدرت نفوذ پرتوهاي آلفا و بتا و گاما رادرفورد مشاهده نمود كه:پرتوهاي آلفا توسط ورقه اي از كاغذ متوقف مي شوند و قابليت نفوذ درون ورقه كاغذ را ندارند يا به عبارت ديگر نمي توانند از كاغذ عبوركنند. پرتوهاي بتا از ورقه ي كاغذي عبور كرده اما در برخورد با ورقه ي آلومينيومي با ضخامت ۱٫۱۶ اينچ متوقف مي شوند و بلاخره پرتوهاي گاما كه قابليت نفوذ در يك ديوار بتوني ضخيم را دارا مي باشد اما نمي توانند از ورقه اي سربي با ضخامت بسيار زياد عبوركنند، بنابراين از اين مشاهدات مي توان نتيجه گرفت كه پرتوهاي آلفا قدرت نفوذي كم تر از پرتوهاي بتا و پرتوهاي بتا قدرت نفوذي كم تر از پرتوهاي گاما دارند. در بين تابش هاي هسته اي پرتوهاي گاما داراي قدرت نفوذ بيش تري هستند اما ذكر اين نكته لازم است كه نافذترين پرتوهاي جهان، پرتوهاي كيهاني هستند كه قابليت نفوذ در يك كوه را نيز دارند و به طور نامحسوسي همواره از اعماق ميان ستاره اي يا شراره هاي خورشيد  زمين را بمباران مي كنند و در اعماق زمين نفوذ مي كنند

عتیقه زیرخاکی گنج