• بازدید : 55 views
  • بدون نظر
این فایل در ۲۱صفحه قابل ویرایش تهیه شده وشامل موارد زیر است:

مواد رادیواکتیو از اتم های ناپایداری تشکیل می شوند که تجزیه می شوند و انرژی سطح بالایی به نام تابش رادیواکتیو را آزاد می کنند این اتمها نهایتا عناصر جدیدی را تشکیل می دهند. سه نوع تابش رادیواکتیو وجود دارد که ذرات آلفا ، ذرات بتا ، و پرتوهای گاما خوانده می شوند. 
اطلاعات اولیه: 
پرتو آلفا (دو پروتون و دو نوترون): جرم چهار واحد اتمی (a.m.u) و بارالکتریکی مثبت در پرتو بتا (الکترونهای سریع): جرم ناچیز و بارالکتریکی منفی یک و پرتو گاما (موج الکترومغناطیسی): بدون جرم و بدون بار (مثلا انرژی خالص) 
تاریخچه: حدود اواخر قرن نوزدهم اکثر دانشمندان بر این عقیده بودند که تمام مسائل عمده فیزیک حل شده اند ، به غیر از چند مورد جزئی برای قطعیت دادن به برخی نظریه های ضروری بود. در سال ۱۸۹۵ ، رزتگن اشعه ایکس را کشف کرد. این اشعه نخست در معاینات پزشکی به کار رفت و بعدها برای بررسی ساختمان اساسی مواد مورد استفاده قرار گرفت 
سیر تحولی و رشد: 
ماری کوری تحقیق خود را با جستجوی کاربردهای پزشکی رادیواکتیو ادامه داد. و قدرت تشعشع ترکیبات اورانیم را اندازه گرفت و تحقیق خود را به عناصر دیگر از جمله توریم ، گسترش داد. 
در سال ۱۹۳۴ میلادی زوج ژولیو- کوری رادیواکتیویته مصنوعی را کشف کرد. 
ماری کوری پی یر کوری همراه با فیزیکدان فرانسوی هانری بکرل (۱۹۰۸-۱۸۵۲ م) مدل دیوی انجمن سلطنتی انگلستان و جایزه نوبل را در فیزیک برای کشف رادیواکتیو دریافت دریافت می کنند. پی یر کوری کشف می کند که رادیم Ra خود بخود حرارت آزاد می کند. این خاصیت نمود ثبت شده از انرژی اتمی به شکل گرماست. 
در سال ۱۹۱۰ میلادی در کنفرانس بروکسل در مورد رادیواکتیویته ، واحد رادیواکتیویته به افتخار او کوری نامیده شد. در مورد کشف رادیواکتیویته توسط هانری بکرل باید بگوییم که در سال ۱۸۹۶ میلادی ، بکرل در جستجوی شواهدی بود که ثابت کند مواد شیمیایی که نور طبیعی فلوئورسان هستند از خود پرتو ساطع می کنند. 
او یک نمونه سولفات پتاسیم اورانیم را برداشت و آن را همراه با یک صفحه عکاسی در کاغذ سیاه پیچید. از آنجا که روزی ابری بود. نمونه بکرل خاصیت فلوئورسانی را از خود نشان نمی داد. او آن را درکشویی در آزمایشگاه خود گذاشت و به آزمایشهای خود در مورد لامپهای اشعه کاتدی ادامه داد. چند روز بعد ، دریافت که نمونه تصویری را بر روی صفحه عکاسی ایجاد کرده است. این نشان می داد که ماده مذکور شکلی از تشعشع را که بعدا ماری کوری آن را رادیواکتیویته نامید ، از خود ساطع کرده است.۱۹۲۲ میلادی نیلز بور نظریه طیفهای ساختار اتمی را منتشر کرد و در ۱۹۲۷ میلادی اصل مکمل بودن را تنظیم می کند که رفتار پیچیده رادیواکتیویته را توصیف می کند. 
ارنست رادرفورد فیزیکدان بریتانی نیوزلندی الاصل (۱۸۷۱-۱۹۳۷) بر روی رادیواکتیویته و ماهیت ذرات آلفا (دارای بار مثبت) تحقیق کرد و متوجه شد که بار مثبت اتم در مرکز آن و در هسته ای ریز و متراکم متمرکز است. در سال ۱۹۳۰ میلادی رادرفورد تشعشعات مواد رادیواکتیو را منتشر کرد. 
تابشهای رادیواکتیو: 
چنان که گفته شد سه نوع تابش رادیواکتیو وجود دارد که ذرات آلفا از چهار ذره اتمی ، یعنی دو پروتون و دو نوترون تشکیل می شوند. این ذرات ضعیفترین نوع تابش رادیواکتیو هستند. و بار الکتریکی مثبت دارند. مسیر آنها را می توان با صفحه کاغذ مسدود کرد. ذرات بتا قدرتمند و از ذرات اتمی که الکترون خوانده می شوند و بار منفی دارند تشکیل می شوند. این کاغذ عبور می کند ولی آلومینیوم آن را مسدود می کند. پرتوهای گاما از همه قدرتمند ترند. آنها امواج الکترومغناطیسی اند و فاقد بارالکتریکی می باشند. اما پرتوهای گاما را فقط لایه ضخیمی از سرب متوقف می سازد. خروجی یا تابش رادیواکتیو می تواند وارد بافتهای زنده شود و به آنها صدمه بزند. بنابراین اطراف آن باید کنترل شود. این تابش را با وسیله ای به نام شمارنده گایگر – مولر ، که نام آن از مخترعانش اقتباس شده است ، می توان اندازه گرفت. وقتی تابش رادیواکتیو وارد این شمارنده می شود ، گاز موجود در آن حامل الکتریسیته می شود. مقدار بار را می توان روی صفحه ای قرائت کرد یا از طریق یک بلند گو به صورت صداهای تیک تیک خاصی شنید. 
نیمه عمر: 
نیمه عمر یک ماده زمانی است که طول می کشد تا خاصیت رادیواکتیویته آن به نصف کاهش یابد. مثلا نیمه عمر کربن ۱۴ (شکل خاصی از عنصر کربن) ۵۶۰۰ سال است. یعنی ۵۶۰۰ سال طول می کشد تا نصف اتم های رادیواکتیو کربن دچار فروپاشی شوند ، یا یک گرم از اتم های رادیواکتیو به نیم گرم تقلیل یابد. ۵۶۰۰ سال دیگر طول می کشد که همین مقدار نیز به نصف برسد و به همین ترتیب. 
نیمه عمر عناصر مختلف از چند ثانیه تا میلیونها سال متغیر است. فروپاشی شبکه ای زباله های اتمی زیان بخش حاصل از نیروگاههای هسته ای میلیونها سال طول می کشد. و همه موجودات زنده روی زمین حاوی مقدار معینی کربن ۱۴ (کربن رادیواکتیو) هستند که با تبادل مداوم گازهای اکسیژن و دی اکسید کربن بین موجودات زنده و جو زمین تشکیل می شود. وقتی یک گیاه یا حیوان می میرد ، این تبادل متوقف می شود و کربن ۱۴ شروع به فروپاشی می کند. 
دانشمندان می دانند که نیمه عمر این کربن ۵۶۰۰ سال است. بنابراین پس از این مدت جسم مرده دقیقا نصف تشعشع رادیواکتیو زمان زندگی خود را ساطع می کند. این فروپاشی با آهنگ ثابتی انجام می شود و در نتیجه این امکان وجود دارد که با اندازه گیری میزان تابش زمان مرگ موجود مورد نظر را دریافت. باستانشناسان از عمر بعضی کربن برای یافتن تاریخ مومیایی های مصر باستان استفاده کرده اند. 
از دیدگاه نظری ، همه مواد رادیواکتیو نهایتا به سرب تبدیل می شوند ، هسته اتم سرب پایدار است و بنابراین خاصیت رادیواکتیو ندارد.اما این امر به طور تجربی اثبات نشده است. زیرا نیمه عمر بعضی از عناصر بیش از عمر انسانهاست. کاربردها: 
بسیاری از ایزوتوپها رادیواکتیو هستند یعنی ذرات با فرکانس بالا را از هسته (مرکز) اتمهای خود ساطع می کنند. از آنها می توان برای دنبال کردن مسیر مواد متحرکی که از دید پنهان هستند ، مانند جریان خون در بدن یک بیمار در بیمارستان ، استفاده کرد. 
در جریان خون: 
مقدار کمی از یک ایزوتوپ رادیواکتیو به درون جریان خون بیمار تزریق می شود. سپس مسیر آن توسط آشکار سازهای خاصی که فعالیت رادیواکتیویته را مشخص می کنند دنبال می شود. این اطلاعات به یک کامپیوتر داده می شود که صفحه آن هرگونه اختلالی مانند انعقاد خون در رگها را نشان می دهد. با استفاده از روشی مشابه ، می توان از ایزوتوپها برای مطالعه جریان مایعات در تاسیسات شیمیایی نیز استفاده کرد. 
در فرسودگی ماشین آلات: 
آهنگ فرسودگی ماشین آلات صنعتی را نیز می توان با استفاده از ایزوتوپها اندازه گرفت. مقادیر اندکی از ایزوتوپها رادیواکتیو به بخشهای فلزی ماشین آلات ، مانند یاتاقانها و رینگ پیسونها اضافه می شود. سپس سرعت فرسودگی با اندازه گرفتن رادیواکتیویته روغنی که برای روغنکاری این بخشها به کار رفته است محاسبه می شود. 
 

اندازه گیری رادیو اکتیویته 

خروجی یا تابش رادیواکتیو می تواند وارد بافتهای زنده شود و به آنها صدمه بند ، بنابراین اطراف آن باید کنترل شود . این تابش را با وسیله ای به نام شمارنده گایگر ـمولر ، که نام آن از مخترعانش اقتباس شده است ، می توان اندازه گرفت وقتی تابش رادیو اکتیو وارد این شمارنده می شود ، گاز موجود در آن حامل الکتریسیته می شود . مقدار بار را می توان روی صفحه ای قرائت کرد ، یا از طریق یک بلندگو به صورت صداهای تیک تیک خاصی شنید.
پزشکی هسته ای
احتمالاً در بیمارستان یا حداقل در فیلم های تلویزیون بیمارانی را دیده اید که برای درمان سرطانشان تحت پرتو درمانی قرار می‌گیرند و یا اینکه پزشکان برای تشخیص بیماریها دستور عکس برداری PET را صادر می‌کنند. همه اینها قسمتی از علم پزشکی هستند که به طور خاص به آن پزشکی هسته ای می‌گویند. در پزشکی هسته ای برای مشاهده اعضای بدن و درمان بیماریها از مواد رادیواکتیو استفاده می‌شود. در پزشکی هسته ای برای تشخیص و درمان بیماریها، هم فیزیولوژی ( بررسی عملکرد ) و هم آناتومی بدن بررسی می‌شود.
خوب، حالا می‌خواهیم برخی از تکنیک هایی را که در پزشکی هسته ای استفاده می‌شود توضیح دهیم. و ببینیم که پرتوها چطوری به پزشکان کمک می‌کنند تا اعماق بدن انسان را ببینند.

تصویر برداری در پزشکی هسته ای
مشکل تصویر برداری از بدن انسان این است که ماده ای کدر و غیر شفاف است، نگاه کردن درون بدن انسان نیز بطور کلی دردناک است. در گذشته روش معمول دیدن درون بدن انسان جراحی بود! اما امروزه با استفاده از انبوهی از روشهای جدید دیگر نیازی به این روشهای وحشتناک نیست. تصویر برداری اشعه X، MRI، تصویر برداری CAT و مافوق صوت برخی از این تکنیک‌ها هستند. هر کدام از این تکنیک‌ها مزایا و معایبی دارند که باعث می‌شود برای شرایط مختلف واعضای مختلف بدن مفید باشند.
تکنیک های تصویر برداری پزشکی هسته ای روشهای جدیدی را برای نگاه کردن به درون بدن انسان برای پزشکان فراهم می‌کند. این تکنیک‌ها ترکیبی از استفاده از کامپیوتر، حسگرها و مواد رادیواکتیو است. این روشها عبارتند از:
• توموگرافی با استفاده از تابش پوزیترون (PET)
• SPECT
• تصویر برداری قلبی – عروقی
• اسکن استخوان
هر کدام ازاین روشها از یکی از خصوصیات عناصر رادیواکتیو برای تولید یک تصویر استفاده می‌کنند.
تصویر برداری در پزشکی هسته ای برای شناسایی موارد زیر بسیار مفید است:
• تومورها
• Aneurysms آنوریسم
• نارسایی سلول های خونی و اختلال در عملکرد دستگاههای بدن مثل غده تیروئید و ریه
استفاده از هر کدام از این روشهای خاص یا مجموعه ای از آنها بستگی به علائم بیمار و نوع بیماری دارد.

توموگرافی تابش پوزیترون (PET)
PET با استفاده از تابش های ساطع شده از مواد رادیواکتیو تصاویر قسمتهای مختلف بدن را تولید می‌کند. مواد رادیواکتیو به درون بدن تزریق می‌شوند و معمولاً به دام اتمهای رادیواکتیو مثل کربن -۱۱، فوئور -۱۸، اکسیژن -۱۵ و یا نیتروژن -۱۳ که نیمه عمر کوتاهی دارند، گرفتار می‌شوند. این اتمهای رادیواکتیو ایزوتوپهای رادیواکتیو اتمهای طبیعی هستند که عمر کوتاهی دارند. با بمباران اتمهای طبیعی به وسیله نوترون می‌توان این اتم‌ها را تولید کرد. وقتی مواد رادیواکتیو تزریق شده به بدن با الکترونهای درون سلول برخورد می‌کنند، پوزیترون اشعه گاما تولید می‌شود. در روش PET با دنبال کردن این اشعه های گاما تصویر برداری انجام می‌شود.
در یک PET اسکن همانطور که گفتم ابتدا به بیمار مواد رادیواکتیو تزریق می‌شود، سپس بیمار روی یک تخت صاف دراز می‌کشد. این تخت به درون یک اتاقک استوانه ای شکل وارد می‌شود، در دیواره های این اتاقک دنبال کننده های اشعه گاما به صورت آرایه دایره ای شکل قرار گرفته اند. این دنبال کننده‌ها یک سری کریستالهای Scintillation دارند که هر کدام به یک تقویت کننده نوری متصل است. این کریستالها اشعه های گامای ساطع شده از بیمار را به فوتون های نور تبدیل می‌کنند تقویت کننده نوری این فوتونها را به سیگنالهای الکتریکی تبدیل کرده و آنها را تقویت می‌کند. کامپیوتر این سیگنالها را پردازش کرده و تصویر را تشکیل می‌دهد. سپس تخت بیمار جا به جا شده واین فرآیند تکرار می‌شود. در نتیجه یک سری تصویر از عضوی که در آن تزریق شده ( مثل مغز، سینه، کبد و … ) به دست می‌آید این تصاویر کنار هم قرار می‌گیرند تا یک تصویر سه بعدی از عضو مورد نظر به وجود آید.
PET می‌تواند تصاویری از جریان خون ودیگر فعالیت های بیوشیمیایی بدن، بسته به این که چه نوع مولکولی به دام اتمهای رادیواکتیو افتاده است، تهیه کند. به عنوان مثال PET می‌تواند تصاویری از متابولیسم گلوکز در مغز تهیه کند. با این حال مراکز PET کمی در دنیا وجود دارد چون این مراکز باید در کنار یک شتابدهنده ذرات ساخته شوند تا بتوان رادیوایزوتوپهای مورد استفاده در این روش را تأمین کرد.

(SPECT) توموروگرافی با استفاده از تابش تک فوتون
SPECT روشی بسیار شبیه به PET است با این متفاوت که ایزوتوپهای مورد استفاده در این روش ( که عبارتند از زنون – ۱۳۳، تکنتیوم – ۹۹ و لودین – ۱۲۳ ) زمان واپاشی طولانی تری دارند و به جای تابش ۲ اشعه گاما فقط یک اشعه گاما تابش می‌کنند. این روش نیز می‌تواند اطلاعاتی در مورد جریان خون و پراکندگی موارد رادیواکتیو در بدن ارائه دهد، البته تصاویر آن حساسیت کمتری دارند و جزئیات کمتری را نسبت به تصاویر PET نشان می‌دهند. اما مزیت مهم این روش نسبت PET این است که به گرانی روش PET نیست. در ضمن تعداد مراکز SPECT بیشتر از مراکز PET هستند، چون در این موارد دیگر نیازی نیست که مراکز در کنار یک شتاب دهنده ساخته شوند.

تصویر برداری قلبی عروقی
در این تکنیک از مواد رادیواکتیو برای مشخص کردن جریان خون در قلب و رگهای خونی استفاده می‌شود. مثال خوب برای این تکنیک آزمایش تنش تالیوم است در این آزمایش یکی از ترکیبات رادیواکتیو تالیوم به بیمار تزریق می‌شود بیمار یک سری نرمش انجام می‌دهد و به وسیله دوربین های پرتو گاما از قلب بیمار عکس برداری می‌شود. پس از یک استراحت مطالعات دوباره تکرار می‌شود؛ اما این بار بدون فعالیت بدنی. تصاویر گرفته شده قبل و بعد از نرمش کردن با هم مقایسه می‌شوند تا تغییرات جریان خون مشاهده شود. این روش برای تشخیص تصلب شراین در قلب و دیگر اعضا مناسب است.

اسکن استخوان
در این روش تابش های مواد رادیواکتیو ( تکنتیوم – بی پی متیل دی سولفات ) تزریق شده به بدن که در بافت استخوان جمع شده اند، آشکار می‌شوند. بافت استخوان ترکیبات فسفر را به خوبی در خود جمع می‌کند. این مواد در نقاطی که فعالیت متابولیک بالایی دارند بیشتر جمع می‌شوند. بنابراین تصویر گرفته شده یک سری نقاط روشن که نشان دهنده فعالیت بالا هستند و یک سری نقاط تاریک که نشان دهنده فعالیت پایین هستند را نشان می‌دهد. اسکن استخوان روش خوبی برای تشخیص تومورهاست. تومورها بطور کلی فعالیت متابولیک بالایی دارند.

پزشکی هسته ای و درمان بیماریها
از مواد رادیواکتیو به عنوان ردیاب رادیواکتیو استفاده می‌شود. این مواد از طریق بلعیدن و یا تزریق وارد جریان خون می‌شود. یکی از روشهای ردیابی به این شکل است که مواد ردیاب در خون حرکت می‌کنند و امکان می‌دهند که ساختار رگهای خونی مشاهده شود. این روش مشاهده به پزشکان این امکان را می‌دهد که لخته و دیگر ناهنجاریهای رگهای خونی را به راحتی تشخیص دهند. علاوه بر این، برخی اعضاء بدن هستند که نوع خاصی از مواد شیمیایی را در خود جمع می‌کنند . برای مثال غده تیروئید ، ید را در خود جمع می‌کند بنابراین با بلعیدن ید رادیواکتیو ( به صورت مایع یا به صورت قرص ) می‌توان تومورهای تیروئید را تشخیص داد و درمان کرد. به همین ترتیب تومورهای سرطانی نیز، فسفات را در خود جمع می‌کنند. بنابراین با تزریق ایزوتوپ رادیواکتیو فسفر – ۳۲ در جریان خون می‌توان تومورهای سرطانی را، به دلیل افزایش رادیو رادیواکتیوشان، شناسایی کرد.
در تصویر برداری، آزمایش یا درمان به وسیله پزشکی هسته ای، مواد رادیواکتیوی که بلعیده یا تزریق می‌شوند به بدن آسیب نمی رسانند. رادیو ایزوتوپ هایی که در پزشکی هسته ای استفاده می‌شوند به سرعت در عرض چند دقیقه تا حداکثر یک ساعت واپاشیده می‌شوند. سطح تابش های رادیواکتیو آنها هم نسبت به اشعه X یا CT اسکن بسیار پایین تر است.

عتیقه زیرخاکی گنج